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Abstract

We study large games played by heterogeneous agents whose payoffs de-
pend on the aggregate action and provide novel equilibrium selection and
comparative statics results. Regarding equilibrium selection, we establish the
equivalence between potential maximization and the global games selection in
supermodular games, and characterize the uniquely selected equilibrium as the
strategy profile that maximizes the ex-ante expected payoffs of a player with
downward-biased beliefs about the aggregate action. To obtain our equiva-
lence result we show that (i) payoffs in an aggregative potential game must
be quasilinear and (ii) beliefs in the global game must satisfy a generalized
Laplacian property linking (weighted) average beliefs to the uniform distribu-
tion. We present comparative statics results that rely on average rather than
pointwise conditions on payoffs and use them to illustrate how heterogeneity
affects equilibrium levels of the aggregate action.

Keywords : aggregative games, potential games, global games, comparative statics,
noise-independent selection, Laplacian beliefs

1 Introduction

Large games in which individual payoffs depend on the aggregate behavior in the
population are ubiquitous in economics and finance.1 An incomplete list includes

∗School of Economics, Drexel University; rspadial@gmail.com. I am deeply grateful to Ryota
Iijima, Stephen Morris, Guillermo Ordoñez, Daisuke Oyama, Joel Sobel and Dai Zusai for helpful
comments, as well as audiences at Academia Sinica, Hitotsubashi, Kyoto, UPenn and PETCO
2018 at Penn State.

1These games are referred in the literature as (linear) aggregative games (Jensen, 2018), average-
action games (Morris and Shin, 2003), games with aggregation (Dubey et al., 2006) or aggregate
games (Martimort and Stole, 2012).

1



models of market competition (aggregate output), macroeconomic coordination (av-
erage search effort), public goods and externalities (sum of contributions), technol-
ogy adoption (average investment), as well as binary-action games where payoffs
depend on the fraction of agents adopting each action such as platform choice, bank
runs, currency crises or games of regime change. In all these economic phenom-
ena, agent heterogeneity is a defining characteristic of the environment (e.g., agents
may differ in costs, preferences, productivity or endowments), and understanding
its effects should be an integral part of the analysis.

A typical feature of these models is the presence of multiple equilibria, which
has been tackled by using equilibrium selection rules that focus on a particular
equilibrium or by resorting to comparative statics that apply to the set of equilibria.
However, the introduction of heterogeneity complicates equilibrium analysis in two
main ways. First, heterogeneity limits the appeal of popular selection rules, such
as those based on introducing incomplete information (e.g., global games), due to
the inability to characterize the selected equilibrium or because of the lack of clear
economic content behind the selection. Second, most of the existing comparative
statics results rely on monotonicity restrictions at the individual level, which may
not apply to heterogeneous models where agents have divergent interests.

We address these limitations by providing new equilibrium characterization and
comparative statics results for large aggregative games with heterogeneous pay-
off types. Specifically, we establish the equivalence between two commonly used
equilibrium selection rules in games with strategic complementarities: the global
games selection (Carlsson and van Damme, 1993; Frankel et al., 2003) and poten-
tial maximization (Monderer and Shapley, 1996). We also characterize the selected
equilibrium and give economic content to the selection by showing that maximizing
potential coincides with maximizing the ex-ante payoffs of an agent with marginal
beliefs, who thinks that she is the lowest type contributing to the aggregate ac-
tion. In addition, we generalize existing results on monotone comparative statics by
replacing conditions that all player types must satisfy (e.g., strategic complementar-
ities) with weaker restrictions that only apply on average. In particular, we identify
conditions on average payoffs under which the set of equilibrium aggregate actions
‘moves up’ after a change in parameters or in the distribution of types.

The games we study have payoffs that depend on the player’s action a ∈ R, the
aggregate action ā and the player’s type w. We obtain the equilibrium characteri-
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zation by uncovering two key properties. First, we determine the payoff structure
required for the game to be a potential game. Second, we pin down average player
beliefs about the aggregate action in global games with heterogeneous payoffs.

Section 3 shows that potential games must exhibit quasilinear payoffs, which
take on the following form: U(a, ā, w) = au(ā) + v(a, w). This payoff structure
figures prominently in the economics literature, such as in the classic models of
Cournot competition, Diamond’s search model, Tullock contests and most binary-
action games, just to name a few.2 Potential games are defined by the existence of
a single function of the strategy profile (i.e., the potential function) that captures
the change in individual payoffs of any player following a change in her strategy.
Because the potential function must reflect individual payoff changes for all types, its
existence imposes strong symmetry restrictions on the payoff impact of the aggregate
action, which are only satisfied by quasilinear payoffs.

Section 4 presents a characterization of beliefs in global games, which we call the
Generalized Laplacian Property since it generalizes to many-action, heterogeneous-
player games both the Laplacian property of homogeneous binary-action games
(Morris and Shin, 2003) and its counterpart for binary-action heterogeneous games
(Sakovics and Steiner, 2012). In a global game, agents receive noisy signals about
some payoff parameter and, because of this, face uncertainty about the aggregate
action. The property states that the weighted average belief about the aggregate
action is given by the uniform distribution, where the weights are proportional to
the contribution of each type to the aggregate action.

We use the generalized Laplacian property to show that if payoffs are quasilin-
ear then, as noise in the global game vanishes, the change in a player’s expected
payoffs after switching actions converges to the (infinitesimal) change in potential
of the complete information game. This implies that equilibrium in the global game
converges to the strategy profile that maximizes potential. We characterize the se-
lected equilibrium by pinning down the functional form of the potential function,

2Models with quasilinear payoffs include externalities (Dybvig and Spatt, 1983), technology
adoption (Farrell and Saloner, 1985; Katz and Shapiro, 1986), contests (Tullock, 1980; Cornes and
Hartley, 2005), common resources (Dasgupta and Heal, 1979), macroeconomic search (Diamond,
1982), cost-sharing (Moulin, 1990), bank runs (Diamond and Dybvig, 1983; Goldstein and Pauzner,
2005), currency crises (Obstfeld, 1986; Morris and Shin, 1998; Guimaraes and Morris, 2007), tax
evasion (Bassetto and Phelan, 2008), regime change and coordination games (Sakovics and Steiner,
2012), crime waves (Bond and Hagerty, 2010), and blockchain (Abadi and Brunnermeier, 2018).
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and provide economic content behind the selection by deriving a dual representation
of potential as the ex-ante payoffs of a player with marginal beliefs. This interpre-
tation allows for a comparison with other selection rules such as Pareto dominant
equilibrium, which maximizes the ex-ante expected payoff given correct beliefs, and
answers the open question about the meaning of maximizing potential in the context
of aggregative games.3

In addition to our characterization result, we also present robust comparative
statics for games with quasilinear payoffs that apply to the set of equilibrium ag-
gregate actions (Section 5). We show that the set moves up following a change
in parameters or in the distribution of payoff types if average payoffs across types
satisfy a monotonicity restriction (increasing differences). In contrast, the existing
literature relies on monotonicity restrictions on payoffs that must apply pointwise
for all types (Milgrom and Shannon, 1994) or, alternatively, on monotonicity re-
strictions on best responses instead of on primitives of the game (Acemoglu and
Jensen, 2010; Camacho et al., 2018). We obtain our results by recasting the prob-
lem of finding equilibrium as a fixed point problem over the set of aggregate actions
instead of full strategy profiles. We highlight the differences with existing results
by showing that the smallest and largest equilibrium aggregate actions go up with
parameters even if individual incentives are not monotone, that is, even if the game
is not supermodular, which allows some agents to exhibit decreasing best responses.
Accordingly, our results can be suitable for games where agents have diverging inter-
ests. Moreover, our comparative statics results regarding the distribution of types
only rely on average restrictions on the heterogeneous component of payoffs v(a, w),
leading to a tractable analysis of the impact of heterogeneity on aggregate behavior.

Overall, the paper shows that in games with quasilinear payoffs one can obtain
results by replacing pointwise conditions by average conditions on payoffs and beliefs.
The paper contributions, which also include a novel definition of potential for games
with continuous actions and types, touch upon many areas of economic theory.
Accordingly, after presenting the main definitions and results, we discuss the related
literature in Section 6.

3In their paper introducing potential games, Monderer and Shapley (1996) openly ask about the
meaning of potential maximization (bottom of page 125, square brackets added for clarification):
“This raises the natural question about the economic content (or interpretation) of P ∗ [potential

maximizer]: What do the firms [players] jointly try to maximize? We do not have an answer to
this question.”
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2 Large Aggregative Games

There is a continuum of players of measure one. Each agent is endowed with a type
w ∈ [w,w] and the mass of agent types is distributed in the population according to
cdf F with density f. They simultaneously choose an action from the set A ⊂ R+,
which can be any compact, countable union of single points and closed intervals.
Leading examples include finite action and continuous action games. To simplify
notation, we normalize actions so that the lowest action in A is set to zero.4 Let
amax := maxA denote the highest action in A.

The payoffs of a player of type w choosing action a are given by U(a, ā, θ, w),
where ā ∈ [0, amax] denotes the average of players’ actions in the population and
θ is a common parameter that belongs to the closed interval Θ ⊂ R. We assume
that U(·) is Lipschitz continuous, differentiable with respect to ā and bounded.5 In
addition, let

∆U(a, a′, ā, θ, w) = U(a, ā, θ, w)− U(a′, ā, θ, w)

denote the payoff differences between choosing a and a′ for a player of type w.
A strategy profile is given by a measurable mapping α : [w,w]→ A. LetA denote

the set of measurable functions α.6 The average or aggregate action of players with
types in any measurable subset W ⊆ [w,w] under profile α is given by

ᾱ(α,W ) =

w∫
w

α(w)dF (w|w ∈ W ), (1)

Abusing notation we use ᾱ(α) to denote the aggregate action in the whole pop-
ulation ᾱ(α, [w,w]). Accordingly, for any strategy profile α ∈ A, the payoffs of a
player of type w are given by U(α(w), ᾱ(α), θ, w).

Formally, a game is given by the tuple Γθ = {F,A, θ, U}. Both F and θ are
common knowledge, i.e., Γθ is a game of complete information. A Nash equilibrium

4If minA 6= 0 we can always redefine the set of actions to be A′ = {a−minA, a ∈ A}.
5By continuity in own action a we mean at interior points of A. Our results can be extended

to payoffs that exhibit discontinuities at certain values of ā or θ, as is the case in regime change
models (see Serrano-Padial (2018) for details).

6The restriction to measurable strategies ensures that payoffs are well defined. It is without
loss of generality in supermodular games, which exhibit equilibrium strategies that are monotone
functions from a measurable subset of R to A and thus are measurable. However, it may be
restrictive in general since it imposes that all agents of the same type use the same (pure) strategy.
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(NE) of the game is a strategy profile α∗ ∈ A satisfying

α∗(w) ∈ arg max
a∈A

U(a, ᾱ(α∗), θ, w) for all w ∈ [w,w].

We use Γ to denote the family of games {Γθ, θ ∈ Θ}.

3 Quasilinear Payoffs and Potential

In this section we show the equivalence between quasilinear payoffs and potential
games. First, we define quasilinearity and potential.

Definition 1. Payoffs are quasilinear if there exist functions u, v such that

U(a, ā, θ, w) = au(ā, θ) + v(a, θ, w),

or, more generally, if U can be expressed as c(θ, w)
(
au(ā, θ)+v(a, θ, w)

)
+u0(ā, θ, w)

with c(θ, w) > ξ > 0 for all θ, w.

Most models with quasilinear payoffs deal with binary-action games (A = {0, 1})
or with continuous-action games (A = [0, amax]). Binary-action games include most
coordination games such as regime change models in which the probability of the
regime failing is a function of the fraction attacking the regime. Perhaps the leading
example of continuous-action games is the model of Cournot competition with het-
erogeneous cost functions, where a is individual output, u represents inverse demand
and v are production costs.7

Quasiliniearity in binary-action games translates into payoff differences being
separable in aggregate action and type, as defined in Serrano-Padial (2018). That
is, ∆U(1, 0, ā, θ, w) = u(ā, θ) + v∆(θ, w), where v∆(θ, w) = v(1, θ, w)− v(0, θ, w).

We will use the following two examples featuring continuous actions to provide
intuition about our results. The first one is about strategic complementarities in
investment, and it will be used to illustrate how to derive the equilibrium selection
rules and characterize the selected equilibrium. The second example is about neg-
ative externalities, e.g., due to congestion, and will highlight the usefulness of our
comparative statics results.

7See footnote 2 for additional examples.

6



Example 1 (Investment Game). Consider an economy populated by a continuum
of heterogeneous firms choosing how much to invest in a new technology. Each
firm chooses investment level a ∈ [0, amax]. Unit returns on investment, given by
u(ā, θ), are increasing in the degree of technology adoption ā and in the quality of
the technology θ. Investment costs are quadratic and inversely proportional to the
firm’s productivity type w ∈ [w,w] ⊂ R++, which is distributed according to F in
the population with Ew = 1. Specifically, payoffs are given by

U(a, ā, θ, w) = au(ā, θ)− a2

2

1

w
. (2)

Example 2 (Negative externalities). A continuum of agents choose their individual
consumption level a ∈ [0, amax] of an exhaustible/congestible good (e.g., roads, cell-
phone bandwidth, natural resources). Payoffs are given by the benefit from usage,
which depends on type w and a common attribute θ of the good, minus (linear) costs,
which increase with average consumption ā. Specifically,

U(a, ā, θ, w) = b(a, θ, w)− c(ā, θ)a,

where b, c are differentiable, b is strictly concave in a and c is increasing in ā.

We next provide a formal definition of potential for the class of large aggregative
games defined above. The original definition by Monderer and Shapley (1996) ap-
plies to finite games, and involves the existence of a mapping from strategy profiles to
the real line, called the potential function, whose change after a single player switches
strategies coincides with the player’s payoff change. Since the game Γθ = {F,A, θ, U}
exhibits a continuum of players and types, we account for the fact that any single
type switching strategies has no measurable impact on the strategy profile by defin-
ing potential as a function whose infinitesimal change after a single type switches
strategies coincides with the type’s change in payoffs.8 We do so by using a mixture
distribution that places a positive mass on the type switching actions and take the

8Existing definitions of potential focus on finite games (e.g., Monderer and Shapley, 1996) or
population games with a discrete distribution of types (e.g., Sandholm, 2009). We could accom-
modate finite types {1, · · · , N} by setting [w,w] = [0, 1] and F = U [0, 1]. Then, we would partition
[0, 1] into N subintervals such that each interval i has length equal to the mass of discrete type i
and assign the payoff function of discrete type i to all w in interval i. The proofs would need to be
adjusted to allow for v to be discontinuous in w at the boundaries of each of the intervals.
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limit of the change in potential as this mass goes to zero, while keeping the actions
of all other types fixed. Let δ(w) denote the Dirac delta distribution that places all
the probability mass on type w and F the space of distribution functions on [w,w].

Definition 2 (Potential). The game Γθ is a potential game if there exists a functional
V : A×F ×Θ→ R satisfying the following two conditions:

1. Let F ε
w denote the mixture distribution (1− ε)F + εδ(w) for ε ∈ (0, 1). For all

w, all a ∈ A, and all α ∈ A

lim
ε→0

V (α′, F ε
w, θ)− V (α, F ε

w, θ)

ε
= ∆U(a, α(w), ᾱ(α), θ, w), (3)

where α′(w) = a and α′(w′) = α(w′) for all w′ 6= w.

2. Let F εε
ww′ denote the mixture distribution (1 − ε − ε)F + εδ(w) + εδ(w′) for

ε, ε ∈ (0, 1). For all w,w′, and all {αi}4
i=1 such that αi(w′′) = αi+2(w′′) if

w′′ 6= w for i = 1, 2 and αi(w′′) = αi+1(w′′) if w′′ 6= w′ for i = 1, 3,

lim
ε→0

lim
ε→0

(V (α4, F
εε
ww′ , θ)− V (α3, F

εε
ww′ , θ))− (V (α2, F

εε
ww′ , θ)− V (α1, F

εε
ww′ , θ))

εε
(4)

exists and coincides with the limit obtained by exchanging the order of limits.

We call V (·, F, θ) the potential function of Γθ. Similarly, Γθ is a weighted potential
game if there exists a function ψ(w, θ) > ζ > 0 such that the game {F,A, θ, Ũ}
with payoffs given by Ũ(a, α, θ, w) = ψ(w, θ)U(a, α, θ, w) is a potential game. The
potential of {F,A, θ, Ũ} is the weighted potential of Γθ.

The first condition in Definition 2 is the mentioned adaptation of potential to the
case of continuous actions and types while the second condition is akin to assuming
differentiability of potential with respect to two types switching actions, adapted
to the use of mixture distributions. The use of mixture distributions is especially
convenient in games where payoffs only depend on the aggregate action, since they
uniformly converge to the original distribution of types and have an intuitive way to
capture the marginal effect of a change in the strategy of a finite number of types.

Our first result shows that quasilinearity is a necessary and sufficient condition for
the existence of weighted potential, and provides the functional form of the potential
function. Abusing notation, since the distribution of types F is a primitive of the
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family of games Γ, we denote the potential function V (α, F, θ) by simply V (α, θ).

All proofs are relegated to Appendix B.

Proposition 1. The game Γθ is a weighted potential game if and only if payoffs are
quasilinear. In addition, the following functional represents the weighted potential
of Γθ:

V (α, θ) =

∫ ᾱ(α)

0

u(z, θ)dz +

∫ w

w

v(α(w), θ, w)dF (w). (5)

The necessity of quasilinear payoffs is brought about by symmetry restrictions
imposed by the existence of potential. Roughly speaking, for a single function to
reflect payoff differences for all types, two things must happen. First, the payoff
function must exhibit symmetry with respect to the aggregate action across types.
This leads to separability of payoffs into two components, one associated with the
aggregate action and the other with the player type. Second, when a type switches
actions the infinitesimal change in the aggregate action only depends on the dif-
ference between the two actions and not on the value of the player’s action before
the switch. Accordingly, the change in potential and thus the change in the player
payoffs associated with such a change in the aggregate action must not depend on
the initial action either. This implies that the payoff component associated with the
aggregate action must be linear in own action. In other words, in aggregative games,
quasilinear payoffs are a consequence of externality symmetry of action changes, a
property of payoffs in potential games identified by Sandholm (2009) for the case
of finite actions and types. For the continuous-action case, externality symmetry
translates into equal cross-partial derivatives:

∂2U(a, ā, θ, w)

∂a∂ā
=
∂2U(a′, ā, θ, w′)

∂a∂ā
for all a, a′, ā, w and w′.

In what follows we assume that the assumption of Lipschitz continuity and
boundedness not only applies to U but also to u and v.

4 Equilibrium Selection

The characterization of payoffs and the potential function in aggregative potential
games allows us to establish the equivalence between two commonly used equilib-
rium selection rules: potential maximization and the global games selection. First,
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we introduce potential maximization and show that it is associated with finding
the NE that maximizes the ex-ante payoffs of an agent with marginal beliefs, i.e.,
who thinks that types lower than hers do not contribute to the aggregate action.
Second, we show that the potential maximizing NE is essentially unique if the game
is supermodular. Finally, after introducing the global games selection, we show that
both selection rules coincide in supermodular games with quasilinear payoffs.

4.1 Potential Maximization

This section introduces the notion of marginal beliefs and conveys two results.
Proposition 2 shows that a strategy profile maximizing potential exists and maxi-
mizes the ex-ante payoffs of an agent with marginal beliefs. Proposition 3 establishes
that there is an essentially unique potential maximizer in supermodular games (Mil-
grom and Roberts, 1990; Vives, 1990; Van Zandt and Vives, 2007).

Definition 3 (Marginal beliefs). An agent of type w has marginal beliefs with
respect to profile α if she believes that the mass of players in the population following
strategy α is 1 − F (w), and that the remaining players choose a = 0. Accordingly,
she believes that the aggregate action is given by ᾱ(α, [w,w])(1− F (w)).

Marginal beliefs have two related properties. First, a player thinks that her
type is a pivotal type, i.e., she thinks types lower than hers do not contribute to
the aggregate action. Second, she underestimates the value of the aggregate action
since ᾱ(α, [w,w]) ≤ ᾱ(α, [w,w]).

A strategy profile αP maximizes the ex-ante expected payoffs of an agent with
marginal beliefs if it satisfies

αP ∈ arg max
α∈A

∫ w

w

U
(
α(w), ᾱ(α, [w,w])(1− F (w)), θ, w

)
dF (w). (6)

The next result establishes that the set of potential maximizers coincides with
the set of profiles that maximize ex-ante payoffs under marginal beliefs. In addition,
it shows that potential maximizers exist and coincide with NE strategy profiles
except possibly in a set of types with measure zero. To facilitate the exposition,
when we say that two strategy profiles coincide a.e. (almost everywhere) we mean
that the set of types for which they may differ has zero measure. Similarly, we say
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that a potential maximizer or equilibrium strategy profile is essentially unique if
any two strategies belonging to the set of maximizers or the equilibrium set differ
in a measure zero set of types.

Proposition 2. If Γθ is a weighted potential game then a strategy profile maximizes
the (weighted) potential given by (5) if and only if it satisfies (6). If α∗ is a potential
maximizer then it coincides a.e. with another potential maximizing strategy profile
that is a NE of Γθ. In addition, the set of potential maximizers and the set of NE
are non-empty.

The proof of existence relies on showing that, due to the continuity of payoffs
and the distribution of types, a potential maximizing strategy profile exists when
restricting attention to step functions defined on an interval partition of the type
space that assign the same action to all types in the same interval. Then we show
that the fact that a player’s payoffs only depend on the aggregate action instead of
the full strategy profile implies that the potential of any profile can be expressed as
the limit potential of a sequence of step functions. The intuition for why a potential
maximizer has to coincide with a NE a.e. is linked to the fact that an individual
strategy switch makes the players payoff and the potential of the game to move in
the same direction. Hence, if there is a set of types that are not best responding,
we could switch the actions of an arbitrarily small subset of them so that they
best respond, thus increasing potential, without having a noticeable impact on the
aggregate action and thus on the contribution to potential of the other players.

Next, we focus on supermodular games satisfying the following assumption.

Assumption 1 (Supermodular game). Payoffs satisfy

(i) If a > a′ then ∆U(a, a′, ā, θ, w) is strictly increasing in ā and also in w. That
is, U exhibits strictly increasing differences w.r.t. a and both ā and w.

(ii) There exists K > 0 such that U(a, ā, θ, w)−U(a′, ā′, θ′, w) ≥ K(a− a′)(θ− θ′)
for all a ≥ a′, all ā ≥ ā′, all θ ≥ θ′ and all w.

Increasing differences with respect to aggregate action in part (i) lead to strategic
complementarities. Similarly, part (ii) implies that a higher θ increases the incentives
to take higher actions.
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It is worth noting that while marginal beliefs do not necessarily reflect how
individual incentives to take actions higher than zero compare across types, in su-
permodular games such beliefs are coherent with the fact that higher types prefer
higher actions.

The next results establishes the generic uniqueness of potential maximizers and
introduces the function αP that selects a unique potential-maximizing equilibrium.

Proposition 3. If Γ is a family of weighted potential games satisfying Assumption 1
then there is an essentially unique strategy profile that maximizes the potential of Γθ

for all θ ∈ Θ except possibly for a countable subset of Θ. In addition, any potential
maximizing strategy profile is increasing a.e. in w.

Let αP (·, θ) be the largest potential-maximizing NE of Γθ, with αP (w, θ) denot-
ing the strategy of type w. The function αP : [w,w] × Θ → A is well-defined and
increasing in w and θ.

The equilibrium selection rule αP selects the essentially unique NE that maxi-
mizes potential for almost all θ. In addition, for values of θ at which there is non-
trivial multiplicity, i.e., when there are several maximizers that differ in a positive
measure set of types, the selection will exhibit discontinuities at θ in some players’
strategies associated with the switch to a different equilibrium. The choice of the
largest NE is innocuous since only determines the choice of strategy at the zero
measure set of θ associated with multiple potential maximizing NE.

The proof of Proposition 3 relies on two properties stemming from complemen-
tarities between actions, types and the common parameter θ. First, best responses
are increasing in ā and in w, leading to NE profiles being monotone w.r.t. types.
In addition, NE profiles are ordered w.r.t. both individual and aggregate actions.
This also means that an agent with marginal beliefs expects the aggregate action
to be higher in a higher NE than in a lower NE. Second, since the potential of the
game can be expressed as the average payoffs of agents with marginal beliefs, the
difference in potential between a higher and a lower NE is increasing in θ given that
payoff differences are increasing in θ (Assumption 1). Hence, if there are multiple
potential maximizing NE with different aggregate actions at θ then the difference
in potential between the highest potential maximizing NE and any lower potential
maximizer, which is zero at θ, becomes positive after an infinitesimal increase in θ.
By continuity, such a positive difference in potential breaks the tie among potential
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maximizing NE and yields an essentially unique potential maximizer. Accordingly,
if there is non-trivial multiplicity at some θ, it goes away in a neighborhood of θ,
implying that the set of θ associated with multiplicity must be at most countable.

We next use the investment game of Example 1 to illustrate how to characterize
the potential-maximizing equilibrium selection rule αP and discuss the economic
implications of maximizing expected payoffs under marginal beliefs. Recall that
individual payoffs are given by

au(ā, θ)− a2

2

1

w
,

which are strictly concave in a. Hence, the optimal investment for an agent of type
w, i.e., the best response to aggregate investment ā, is the solution to the FOC9

α(w) = u(ā, θ)w. (7)

Integrating individual actions across types and recalling that Ew = 1 we obtain the
equilibrium condition on aggregate investment:

ā =

∫
w

u(ā, θ)wdF (w) = u(ā, θ). (8)

The solutions ā∗ to this equation represent the NE levels of aggregate investment of
the game. Given (7) and (8), we can write equilibrium strategies as α∗(w) = ā∗w.

Next, consider the following s-shaped specification of returns: u(ā, θ) = 2θ
ā2

ā2 + 1
.

Under s-shaped returns, eq. (8) has at most three solutions, zero investment (ā∗ = 0)
and the real solutions to quadratic equation

ā∗2 − 2θā∗ + 1 = 0 ⇒ ā∗ = θ ±
(
θ2 − 1

)1/2
.

That is, the game has multiple NE when θ ≥ 1. It is worth noting that the NE
exhibiting the largest investment Pareto dominate the lower investment equilibria.10

9To keep things simple we assume that the upper bound amax on investment is high enough so
that it is not binding for the values of θ that we consider.

10Equilibrium payoffs can be written as U(α∗(w), ā∗, θ, w) = (ā∗w)ā∗ − (ā∗w)2

2
1
w = ā∗

2 w, which
are strictly increasing in ā∗.
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By Proposition 1 the potential function is given by

V (α, θ) =

∫ ᾱ(α)

0

u(z, θ)dz −
∫
w

α(w)2

2

1

w
dF (w). (9)

Since NE satisfy α∗(w) = ā∗w and strategy profiles that maximize potential are
essentially equal to a NE, we can restrict attention to individual strategies of the
form αā(w) = āw and look for the set of ā that maximize

V (αā, θ) =

ā∫
0

2θ
z2

z2 + 1
dz −

∫
w

ā2w2

2

1

w
dF (w) = 2θ

(
ā− tan−1(ā)

)
− ā2

2
. (10)

The left plot in Figure 1 shows that this function has at most two local maximiz-
ers, the zero investment equilibrium and the largest solution to eq. (8) whenever it
exists.11 As the quality of the technology crosses threshold θ̂ ≈ 1.1, the global max-
imizer, denoted by āP , switches. This implies that individual investment strategies
remain at zero at quality levels below the threshold and discontinuously jump at θ̂,
as depicted in the right graph of Figure 1. Specifically, they are given by the cutoff
function

αP (w, θ) =

0 θ < θ̂(
θ + (θ2 − 1)

1/2
)
w θ ≥ θ̂.

(11)

The zero-investment trap and the discontinuous switch to the high investment
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θ̂

Figure 1: Potential maximization (left) and investment strategies (right).

11The NE with intermediate investment levels is a local minimizer.
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equilibrium is due to s-shaped returns, which imply that complementarities are
small at low and high investment levels, while being stronger at moderate values of
ā.Maximizing the ex-ante payoffs of an agent with marginal beliefs leads to selecting
the no investment equilibrium over the Pareto dominant NE for all θ ∈ [1, θ̂). This
is driven by the fact that marginal beliefs underestimate investment levels, making
the largest investment equilibrium look too risky from an ex-ante perspective when
the quality of the technology θ is not very high.

4.2 Global Games Selection

We next describe the Global Games (GG) equilibrium selection rule for supermod-
ular games (Carlsson and van Damme, 1993; Frankel et al., 2003). It is based
on introducing incomplete information about parameter θ via idiosyncratic noise.
Specifically, each agent gets a signal s = θ + νη, where ν > 0 is the noise scale,
and η is independently drawn from a continuous distribution with full support on
[−1/2, 1/2]. The noise distribution is allowed to depend on the agent’s type. Let
Hw and hw respectively denote the cdf and the density of ν for an agent of type w.
Agents have a common prior about θ with continuous density φ and full support on
Θ. We assume that the exact Law of Large Numbers (LLN) applies for each type
w, i.e., the fraction of agents of type w with signal noise less than ε is given by
Hw(ε). A strategy in the incomplete information game is a mapping from the space
of signals S to actions in A. Abusing notation, let α : [w,w] × S → A denote the
strategy profile that assigns action α(w, s) to a player of type w receiving signal s.

The goal of the GG selection is to induce uniqueness of Bayes Nash equilibrium
(BNE) in the incomplete information game and then select a NE of the complete
information game Γθ by taking the limit as ν → 0. To obtain uniqueness, in addition
to Assumption 1, we introduce dominance regions, that is, ranges of parameter values
at which all player types have a strictly dominant strategy.

Assumption 2. There exist θ > inf Θ and θ̄ < sup Θ such that, for all w and all
ā ∈ [0, amax], if θ < θ then ∆U(a, 0, ā, θ, w) < 0 for all a > 0, and if θ > θ̄ then
∆U(amax, a, ā, θ, w) > 0 for all a < amax.

The next two propositions establish, respectively, that there is an essentially
unique BNE (i.e., unique except in a zero measure subset of [w,w]×S), and that it
converges to a NE of Γθ as noise vanishes.
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Proposition 4. If Assumptions 1 and 2 are satisfied then there exists ν̄ > 0 such
that for all ν < ν̄ there is an essentially unique BNE in the global game. Moreover,
the equilibrium strategy profile is monotone in both s and w.

The proof is based on standard arguments in the global games literature (Frankel
et al., 2003). First, payoffs exhibiting increasing differences w.r.t. signals and actions
implies that the global game is a supermodular game. Thus, the game has both
a smallest and a largest equilibrium (Theorem 5 in Milgrom and Roberts, 1990).
Moreover, players follow monotone strategies in these equilibria. Second, we show
that, under a uniform prior, shifting all strategies so that the shifted action under
signal s+ δ correspond to the original action under signal s leads to the same beliefs
about the aggregate action at the shifted signal s + δ, but to higher expectations
about θ.We exploit this translation invariance to prove that, as we move up from the
smallest to the largest equilibrium, expected payoffs differences between higher and
lower actions go up. This implies that there can be only one equilibrium modulo zero
measure sets of types and signals. Finally, we show that beliefs under a non-uniform
prior converge to the beliefs associated with a uniform prior.

Proposition 5. If Assumptions 1 and 2 are satisfied then there exists a strategy
profile αG such that, (i) for any sequence αν of equilibria in the global game indexed
by ν → 0, limν→0 α

ν(w, s) = αG(w, s) for almost all w, s; and (ii) αG(·, θ) is a NE
of Γθ for almost all θ ∈ Θ.

A desirable property of the GG selection is to be invariant to different noise
distributionsHw. In such a case, the GG selection is said to be noise-independent. As
we show next, this is indeed the case under quasilinear payoffs, given its equivalence
to potential maximization.

4.3 Equivalence Result

Theorem 1 establishes below that the limit equilibrium αG in the global game essen-
tially coincides with the potential maximizing strategy profile αP in the complete
information game. We obtain the result by identifying a key property of beliefs
about the aggregate action in the global game, which we call the Generalized Lapla-
cian Property (GLP). The GLP links the (weighted) average belief to the uniform
distribution. We use the GLP to show that, under quasilinear payoffs, the change
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in expected payoffs of a type that switches actions coincides with the change in po-
tential as noise vanishes. Since this is a key step in the proof, we use Example 1 to
introduce the GLP and provide some intuition before formally stating the theorem.

Recall that, in the investment game, the potential maximizing profile αP (w, θ)

given by (11) implies that firms follow a cutoff rule, i.e., they choose zero investment
if θ < θ̂ and the largest NE investment if θ ≥ θ̂ (see Figure 1). Accordingly, for
the limit equilibrium in the global game to coincide with αP (w, θ), a firm with
type w needs to be indifferent between choosing α1(w) = 0 and α2(w) = αP (w, θ̂)

when it receives signal s = θ̂. That is, the expected payoff difference between the
two investment levels conditional on s = θ̂ must be zero and therefore, the average
across types of such payoff differences must also be zero. Using the GLP we will
show that the average of expected payoff differences is indeed equal to the difference
in potential between strategy profiles α1 and α2, which is zero since both profiles
maximize potential at θ̂.

Assume that in the global game a firm of type w chooses α1(w) if its signal is
below some cutoff κ(w) and α2(w) if its signal is above κ(w). Furthermore, assume
that firms have a uniform prior over Θ and that their cutoffs κ(·) are within noise
range ν of each other. Notice that, when ν is very small, θ is very close to the value
of the firm’s signal, and expected payoffs conditional on signal s = κ(w) can be
approximated by

E[U(a, ā, θ, w)|s = κ(w)] ≈
∫
z

au(z, κ(w))dGw(z)− a2

2

1

w
,

where Gw(z) = Pr(ā ≤ z|s = κ(w), w) denotes the cdf of aggregate investment
conditional on signal s = κ(w) and on type w when players follow the above cutoff
strategies. Hence, the difference in expected payoffs across the two actions can be
expressed as

0 ≈
∫
z

(α2(w)− α1(w))u(z, κ(w))dGw(z)− α2(w)2 − α1(w)2

2

1

w
.

Solving these indifference conditions requires pinning down Gw, which depends
on the distribution of noise and signal cutoffs κ. However, under quasilinear payoffs
and a uniform prior, we can circumvent this problem by focusing on average instead
of individual indifference conditions and using the GLP to replace average beliefs.
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The next lemma presents the GLP under a uniform prior, which states that the
weighted average of beliefs Gw is given by the uniform distribution. The weights
represent the contribution of type w to the aggregate action when it switches actions,
i.e., they are given by (α2(w)− α1(w))f(w).

Lemma 1 (Generalized Laplacian Property). Fix α1, α2 ∈ A satisfying α1(w) ≤
α2(w) for all w. If players have a uniform prior then, for any signal cutoff function
κ : [w, w̄] → [inf Θ + ν/2, sup Θ − ν/2] such that each type w chooses α1(w) if
s < κ(w) and α2(w) if s ≥ κ(w) and for all z ∈ [ᾱ(α1), ᾱ(α2)], we have that12

w∫
w

(α2(w)− α1(w))Gw(z)dF (w) = z − ᾱ(α1). (12)

Averaging indifference conditions across firms we obtain

0 ≈
∫
w

∫
z

(α2(w)− α1(w))u(z, κ(w))dGw(z)dF (w)−
∫
w

α2(w)2 − α1(w)2

2

1

w
dF (w).

In addition, as ν goes to zero, since firms’ signal cutoffs are within the noise range
of each other, u(z, κ(w)) can be approximated by u(z, k), where k is the limit cutoff
to which all κ(w) converge. Hence, the first integral in the above expression satisfies∫

z

u(z, k)d
(∫

w

(α2(w)− α1(w))Gw(z)dF (w)
)

=

∫ ᾱ(α2)

ᾱ(α1)

u(z, k)dz,

where the equality comes from applying (12) to replace the average belief while the
limits of integration reflect the range of feasible aggregate investment levels given
the cutoff strategies used by firms. This implies that cutoff k must satisfy

0 ≈
∫ ᾱ(α2)

ᾱ(α1)

u(z, k)dz −
∫
w

α2(w)2 − α1(w)2

2

1

w
dF (w).

But notice that, when k = θ̂, the RHS is the difference in potential between NE
profiles α2 and α1 at quality θ̂, which is zero since both profiles maximize potential.

The relationship between expected payoff differences and changes in potential
12To see how (12) implies that ā is uniformly distributed in [ᾱ(α1), ᾱ(α2)] note that we can

divide both sides by ᾱ(α2)− ᾱ(α1) so that the RHS is equal to uniform cdf z−ᾱ(α1)
ᾱ(α2)−ᾱ(α1) .
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partially illustrated by this example can be established for each type individually
by applying the GLP to any subset of types, effectively linking changes in expected
payoffs following a deviation from the potential maximizing equilibrium to changes
in potential. This leads to the following equivalence result.

Theorem 1. If Γ is a family of weighted potential games and satisfies Assumptions 1
and 2 for all θ ∈ Θ then, for any prior with continuous density and full support in Θ,
αG is equal to αP , except possibly in a measure zero subset of [w,w]×Θ. Accordingly,
αG is noise-independent.

The equivalence result provides a tractable characterization of the GG selection
as well as an economic interpretation in terms of maximizing ex-ante payoffs under
marginal beliefs. In addition, it identifies quasilinearity as a sufficient, easy-to-check
condition for noise independence in aggregative global games.

The proof works as follows. It first shows for the uniform-prior case that, for any
subset of typesW , the expected average payoff gain across types inW from deviating
from αP to any profile α using a common signal threshold s = θ is equal to the
change in potential. This is done by applying a version of the GLP showing that the
average belief about the aggregate action of types in W is the uniform distribution
(Lemma 3 in Appendix A). Since we can choose W to be a small neighborhood of
any type w and potential maximization implies that the change in potential must
be negative, a continuity argument implies that, for almost all types, the deviation
from αP to α is not profitable, i.e., that the potential maximizing equilibrium profile
coincides with the limit equilibrium in the global game. The proof then uses a limit
version of the GLP for non-uniform priors to extend the equivalence result beyond
the uniform-prior case (Lemma 5 in Appendix A).13

The GLP holds irrespective of the payoff structure of the game and is the product
of combining three key ingredients, namely, monotone cutoff strategies, a uniform
prior and additive noise. Cutoff strategies link the aggregate action of type w to the

13The limit version of the GLP could be used to relax the assumption of additive noise. For
instance, any signals of the form s = d(θ, η; ν), with d strictly increasing, for which there exists a
monotone transformation q(s) = q1(θ) + νq2(η) would lead to the same limit equilibrium. These
include multiplicative noise, i.e., s = θην , as well as exponential noise (s = θη

ν

), with noise support
defined to ensure that signals are well-defined and monotone in θ and η. The reason is that we
can redefine signals as q(s), the common value parameter as q1(θ) and noise as q2(η) so that the
associated distributions satisfy all the assumptions, thus leading to the same equilibrium selection.
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proportion of agents with signals higher than the type’s cutoff, i.e., to the cdf of sig-
nals. In turn, the uniform prior and additive noise lead to signals being uniformly dis-
tributed and independent of types, as long as signals lie in [inf Θ+ν/2, sup Θ−ν/2].

This is because, as shown by Lemma 4 in Appendix A, the sum of two independent
random variables, one of them uniformly distributed and with a larger support than
the other, has a constant density except at the tails. This explains both the connec-
tion between average beliefs and the uniform distribution and also their invariance
with respect to Hw.

The above example also illustrates the key role that quasilinearity plays in the
characterization of the global games selection and, particularly, in its independence
of the noise structure. If the payoff impact of the aggregate action is not linear in
own action or it is asymmetric across types then we cannot apply the GLP to replace
weighted average beliefs. This is because in the former case beliefs weights are not
proportional to the difference in actions (α2(w)−α1(w)), while in the latter case we
cannot integrate individual beliefs separately from payoffs if u were to vary across
types. Hence, solving for equilibrium would require the use of individual beliefs,
which depend in non-trivial ways on the distribution of noise (see Serrano-Padial
(2018) for an example in which the GG selection depends on Hw when payoffs are
not quasilinear).

5 Comparative Statics

This section identifies conditions under which changes in parameters (θ) or hetero-
geneity (F ) makes the set of NE aggregate actions to go up, even if the game is
not supermodular. By exploiting the quasilinear payoff structure, we are able to
provide conditions on average payoffs. To do so, we first characterize the set of NE
aggregate actions as fixed points of a nested maximization problem.

LetAā = {α ∈ A : ᾱ(α) = ā} be the set of strategy profiles with aggregate action
ā. In addition, denote by B(ā, θ) the maximum average value of the idiosyncratic
payoff component v(a, θ, w) when strategy profiles are restricted to Aā, that is,

B(ā, θ) := max
α∈Aā

∫
w

v(α(w), θ, w)dF (w). (13)
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Lemma 2. B(ā, θ) is well-defined and continuous in ā. If payoffs are quasilinear
then ā∗ is the aggregate action in some NE if and only if

ā∗ ∈ arg max
ā∈[0,amax]

(
āu(ā∗, θ) +B(ā, θ)

)
. (14)

In words, the aggregate action ā∗ in a NE is the solution to a two-step problem.
First, find the highest average idiosyncratic payoffs associated with each level of
the aggregate action ā. Second, check if aggregate action ā∗ maximizes average total
payoffs among all possible aggregate actions ā when the symmetric payoff component
is kept fixed at u(ā∗, θ).

This result allows us to establish conditions on u(ā, θ) and B(ā, θ) for the set of
NE aggregate actions to go up after an increase in θ (Theorems 2 and 3) or after a
change in the type distribution F (Theorems 4 and 5).

Theorem 2 (Robust Comparative Statics I). Let payoffs be quasilinear and let Θ′

be a compact subset of Θ. If u(ā, θ) is increasing in θ ∈ Θ′ for all ā ∈ [0, amax] and
B(ā, θ) exhibits strictly increasing differences in [0, amax]×Θ′ then the smallest and
largest NE aggregate actions are increasing in Θ′.

Theorem 2 can be further generalized by assuming that āu(ā′, θ) + B(ā, θ) is
single-crossing in ā, θ for all ā′ (Milgrom and Shannon, 1994). However, imposing
separate conditions on u and B allows for a simpler derivation of direct restrictions
on payoffs. Still, the conditions on B(ā, θ) can be hard to interpret since they
involve the value function of a constrained maximization problem. The next result
provides sufficient conditions for the smallest and a largest NE to go up with θ in
the continuous-action case. Let int(X) denote the interior of a set X. In particular,
int(A) is the set of measurable profiles such that α(w) ∈ (0, amax) for all w.

Theorem 3. Let A = [0, amax] and Θ′ ⊆ Θ be a closed interval of parameter values
θ. Let u(ā, θ) be increasing in θ ∈ Θ′ for all ā ∈ [0, amax]. If the smallest and a largest
NE are in int(A) for all θ ∈ Θ′ and, for any α ∈ int(A) and any θ ∈ int(Θ′),∫ w

w

∂2v(a, θ, w)

∂a∂θ

∣∣∣
a=α(w)

dF (w) > 0, (15)

then the smallest and a largest NE aggregate actions are increasing in Θ′.
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Condition (15) is straightforward to check and it requires the idiosyncratic pay-
off component to exhibit average increasing differences in int(A) × int(Θ′). For
instance, in the negative externalities game of Example 2 this amounts to the ex-
pected marginal benefit from consumption being increasing in θ. To see why, recall
that in the example payoffs are given by

U(a, ā, θ, w) = b(a, θ, w)− c(ā, θ)a,

where b is strictly concave in a and c is increasing in ā. Concavity of b implies
that utility is strictly concave in a. Hence, as long as the marginal benefit satisfies
∂b(a,θ,w)

∂a

∣∣∣
a=0

> c(ā, θ) and amax is large enough, the optimal consumption levels will
lie in the interior of [0, amax]. Hence, condition (15) translates into∫ w

w

∂2b(a, θ, w)

∂a∂θ

∣∣∣
a=α(w)

dF (w) =
∂

∂θ
E

(
∂b(a, θ, w)

∂a

∣∣∣
a=α(w)

)
> 0.

Condition (15) is significantly weaker than imposing monotonicity restrictions point-
wise at the type level (Milgrom and Shannon, 1994; Acemoglu and Jensen, 2010).
For instance, it is straightforward to check that if payoffs exhibit increasing dif-
ferences for all types then they satisfy the conditions in Theorem 3. In contrast,
Theorem 3 allows for individual payoffs of a subset of types to exhibit strict decreas-
ing differences in a, θ.14 In addition, the theorem presents conditions on payoffs,
which are primitives of the game, making them easier to check than restrictions on
average best responses (Camacho et al., 2018).

Theorem 4 (Robust Comparative Statics II). Let B(ā, θ) and B̂(ā, θ) be the value
functions defined by (13) associated with type distributions F and F̂ , respectively. If

B(ā, θ)−B(ā′, θ) ≥ B̂(ā, θ)− B̂(ā′, θ)

for any ā, ā′ ∈ [0, amax] such that ā > ā′, then the smallest and largest NE aggregate
actions are higher under F than under F̂ .

The next theorem presents sufficient conditions that are easy to verify for games
with continuous actions.

14In Example 2 payoffs U exhibit decreasing differences if ∂2U
∂a∂θ ≤ 0, that is, if ∂2b

∂a∂θ <
∂c
∂θ .
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Theorem 5. Let A = [0, amax] and F, F̂ be two type distributions. If the smallest
and largest NE are in int(A) for both F and F̂ , and, for any α ∈ int(A),∫ w

w

∂v(a, θ, w)

∂a

∣∣∣
a=α(w)

dF (w) >

∫ w

w

∂v(a, θ, w)

∂a

∣∣∣
a=α(w)

dF̂ (w), (16)

then the smallest and largest NE aggregate actions are higher under F than under
F̂ .

In Example 2 condition (16) boils down to∫ w

w

∂b(a, θ, w)

∂a

∣∣∣
a=α(w)

dF (w) ≥
∫ w

w

∂b(a, θ, w)

∂a

∣∣∣
a=α(w)

dF̂ (w).

This is the case, for instance, if ∂b
∂a

is increasing in w and F first-order stochastically
dominates F̂ , or if ∂b

∂a
is concave in w and F̂ is a mean-preserving spread of F.

We finish by mentioning that, although beyond the scope of the paper, the above
characterization of the set of NE aggregate actions (Lemma 2) could be used to
explore whether there exist average conditions on payoffs that guarantee uniqueness
of the equilibrium aggregate action, instead of relying on pointwise conditions.15

6 Related Literature

Our discussion of the related literature narrowly focuses on the three more closely
related areas, namely, large potential games, heterogeneous global games, and com-
parative statics in aggregative games.

Monderer and Shapley (1996) introduced various definitions of potential in fi-
nite games. Among other properties, potential maximizers have been shown to be
evolutionary stable. In the context of large games, Sandholm (2009) defined po-
tential in population games with finite actions and finite types, and showed that
the existence of potential in these games is linked to payoffs exhibiting externality
symmetry.16 Our notion of potential extends the definition of potential to allow

15Cheung and Lahkar (2018) and Lahkar (2017) study equilibrium existence in potential ag-
gregative games with a homogeneous population.

16Hofbauer and Sandholm (2007) and Zusai (2018) prove the evolutionary stability of local
maximizers of potential in population games with finite actions and player types.
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for continuous actions and types, and we show why the existence of potential im-
plies quasilinear payoffs by deriving symmetry conditions for payoffs that depend
on the aggregate action. We also identify the potential function for this class of
aggregative games, leading to a tractable characterization of potential maximizing
equilibria, and provide economic content behind potential maximization, which has
been an open question in the literature. Our extension to continuous type games
also builds on the literature on non-atomic games (Schmeidler, 1973).

Frankel et al. (2003) proposed the global games selection for games with het-
erogeneous payoffs and established uniqueness of the selected equilibrium in both
finite- and continuum-player games with finite types. Focusing on binary-action
games with symmetric NE, Sakovics and Steiner (2012) identified a key property
of average beliefs that they used to characterize the global games selection. Drozd
and Serrano-Padial (2018) extended such characterization to binary action games
with asymmetric equilibria. Our results build upon their work by generalizing the
belief property beyond binary actions and by characterizing the global games selec-
tion using the potential function. The connection between potential maximization
and the global games selection can be established for finite supermodular games by
combining the results of Ui (2001) and Morris and Ui (2005), who respectively show
that maximizers of potential and the more general notion of monotone potential are
robust to incomplete information in the sense of Kajii and Morris (1997),17 with
those of Basteck et al. (2013), who show that the global games selection picks the
robust equilibrium whenever it exists. In addition to directly proving this connection
in large aggregative games, since the potential maximizing equilibrium is unrelated
to the distributional assumptions about noise used in the global game, we provide
an easy-to-check sufficient condition, quasilinearity, for the global games selection
to be noise independent.

Finally, the paper contributes to the recent literature of aggregate comparative
statics (Acemoglu and Jensen, 2010, 2015; Camacho et al., 2018), which focuses on
comparative statics on aggregate behavior instead of on individual choices (Top-
kis, 1979; Milgrom and Roberts, 1990; Vives, 1990; Milgrom and Shannon, 1994).
Acemoglu and Jensen (2010, 2015) find monotonicity conditions on individual best

17Potential maximization implies monotone potential maximization. Oyama and Takahashi
(2020) prove that monotone potential maximization is necessary and sufficient for robustness in
binary-action finite games.
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responses for the smallest and largest equilibrium aggregate actions to be monotone
in the model parameters. Camacho et al. (2018) further relax these restrictions by
pinning down monotonicity conditions on average best responses. We expand their
contributions by identifying direct restrictions on average payoffs.
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Appendix A The Generalized Laplacian Property
This section presents the full version of the GLP for uniform prior and the limit
version of the GLP for non-uniform priors.

Lemma 3 (Generalized Laplacian Property). Assume agents have a uniform prior.
Fix any measurable subset of types W , any α1, α2 ∈ A with α1(w) ≤ α2(w) for all
w ∈ W , and any cutoff function κ : [w, w̄] → [inf Θ + ν/2, sup Θ − ν/2] such that
α(w, s) = α1(w) if s < κ(w) and α(w, s) = α2(w) if s ≥ κ(w) for all w ∈ W. Then,
for all z ∈ [ᾱ(α1,W ), ᾱ(α2,W )],∫

W

(α2(w)− α1(w))Gw(z|κ;α,W )dF (w|w ∈ W ) = z − ᾱ(α1,W ), (17)

where Gw(z|κ;α,W ) := Pr(ᾱ(α,W ) < z)|s = κ(w), w).

To prove Lemma 3 we make use of the following property of the sum of two
independent random variables.

Lemma 4. Let x, y be two independent random variables such that x is uniformly
distributed in [x, x] and y has a density fy with support [y, y]. If y − y < x− x then
the sum z = x+ y has a constant density in [x+ y, x+ y]. Specifically,

fz(z) =


1

x−xFy(z − x) z < x+ y
1

x−x z ∈ [x+ y, x+ y]
1

x−x (1− Fy(z − x)) z > x+ y.

(18)

Proof of Lemma 4. Note that, since x = z−y for any given z, we must have that x ∈
[max{x, z− y},min{x, z− y}]. The joint density of z and x is given by fz(z|x)fx(x).
In addition, fz(z|x) = fy(z − x|x) = fy(z − x) since y is independent of x. Hence,
the density of z satisfies fz(z) =

∫ x
x
fz(z|x)fx(x)dx =

∫ min{x,z−y}
max{x,z−y} fy(z − x) 1

x−xdx,
leading to the following expression:

fz(z) =
1

x− x
(
Fy(z −max{x, z − y})− Fy(z −min{x, z − y})

)
,

which yields (18) by plugging the values of max{x, z− y} and min{x, z− y} for the
following three cases. First, if z < x+y then max{x, z−y} = x and min{x, z−y} =
z−y. Second, if z ∈ [x+y, x+y] then max{x, z−y} = z−y and min{x, z−y} = z−y.
Finally, if z > x+ y then max{x, z − y} = z − y and min{x, z − y} = x.

Proof of Lemma 3. The proof consists of two parts. The first shows that when
agents follow cutoff strategy κ the aggregate action coincides with the aggregate
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action in a game where the set of available actions is normalized to be {0, 1} and
the type distribution is weighted by the difference α2(w)− α1(w). The second part
shows that, in the normalized game, the average belief conditional on s = k(w)
about the aggregate action of types in W is uniformly distributed in [0, 1].

Abusing notation, for any θ ∈ Θ, let ᾱ(α,W, θ) denote the aggregate action
under the strategy α(w, s) = α1(w) if s < κ(w) and α(w, s) = α2(w) otherwise. By
the exact LLN, the fraction of agents of type w that receive a signal below cutoff
κ(w) is given by 1−Hw

(
k(w)−θ

ν

)
. Accordingly, the aggregate action associated with

types in W when they follow cutoff strategy κ is given by

ᾱ(α,W, θ) = ᾱ(α1,W )+

∫
W

(α2(w)−α1(w))

(
1−Hw

(
k(w)− θ

ν

))
f(w|w ∈ W )dw.

Define the density function f̂(w|w ∈ W ) = α2(w)−α1(w)
ᾱ(α2,W )−ᾱ(α1,W )

f(w|w ∈ W ). Note that

f̂ is well-defined since ᾱ(αi,W ) =

∫
W

αi(w)f(w|w ∈ W )dw for i = 1, 2. Let F̂ be

the corresponding cdf.
We can express the aggregate action in W as

ᾱ(α,W, θ) = ᾱ(α1,W ) + (ᾱ(α2,W )− ᾱ(α1,W ))y(κ,W, θ), (19)

where y(κ,W, θ) =
∫
W

(
1−Hw

(
k(w)−θ

ν

))
f̂(w|w ∈ W )dw represents the mass of

agents in W with signals s ≥ κ(w). Accordingly, we have that∫
W

(α2(w)− α1(w))Gw(z|κ;α,W )dF (w|w ∈ W )

=

∫
W

Pr

(
y(κ,W, θ) <

z − ᾱ(α1,W )

ᾱ(α2,W )− ᾱ(α1,W )

∣∣∣s = κ(w), w

)
dF̂ (w|w ∈ W ) (20)

Since z−ᾱ(α1,W )
ᾱ(α2,W )−ᾱ(α1,W )

∈ [0, 1] when z ∈ [ᾱ(α1,W ), ᾱ(α2,W )], to prove (17) it
suffices to show that∫

W

Pr (y(κ,W, θ) < z|s = κ(w), w) dF̂ (w|w ∈ W ) = z for all z ∈ [0, 1]. (21)

To do so, consider the normalized game Γ̂θ = {F̂ , {0, 1}, θ, U}. If agents in the global
game version of Γ̂θ follow strategy α(w, s) = 0 if s < κ(w) and α(w, s) = 1 otherwise,
then the aggregate action in W is given by y(κ,W, θ) for all θ.

To prove (21), define ‘virtual signals’ s̃ = s− κ(w) for all w ∈ W , which exhibit
a common cutoff κ̃ = 0. Let the ‘extended type’ of a player be the tuple (s, w).

Since θ is uniformly distributed in [inf Θ, sup Θ] and νη is independent of θ
with support [−ν/2, ν/2], by Lemma 4, signals in [inf Θ + ν/2, sup Θ − ν/2] have
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constant density 1
sup Θ−inf Θ

independent of w. Accordingly, the density associated
with extended type (k(w), w), conditional on s̃ = 0 and on w ∈ W , is given by

Pr(κ(w), w|s̃ = 0,W ) =
Pr(k(w), w|W )

Pr(s̃ = 0|W )
=

1
sup Θ−inf Θ

f̂(w|W )
1

sup Θ−inf Θ

=
f̂(w)∫

W
f̂(w)dw

. (22)

where Pr(s, w|·) denotes the conditional probability density of extended type (s, w).
Next, we show that y(κ,W, θ) is uniformly distributed conditional on s̃ = 0, i.e.,

Pr(y(κ,W, θ) < z|s̃ = 0,W ) = z. (23)

First note that the virtual noise η̃ = (s̃ − θ)/ν follows the mixture distribution{
Hw

(
η̃ + κ(w)

ν

)
, f̂(w)∫

W f̂(w)dw

}
W
. This implies that the virtual noise belongs to type

w with probability f̂(w)∫
W f̂(w)dw

. In addition, its distribution conditional on type w is
given by the noise distribution evaluated at η = η̃ + κ(w)/ν. But note that the
mixture distribution does not depend on θ so the random variable η̃ is i.i.d. across
agents and independent of θ.

Let Ĥ be the cdf of η̃ and define Ĥ−1(z) = inf{η̃ : Ĥ(η̃) = z}. Given the
definition of virtual noise, the aggregate action in subset W is given by the fraction
of agents in W whose virtual signal is greater than zero, i.e., by one minus the cdf
of the virtual noise Ĥ evaluated at −θ/ν. This yields expression (23) given that

Pr(y(κ,W, θ) < z|s̃ = 0,W ) = Pr(1− Ĥ(−θ/ν) < z|s̃ = 0,W ) = Pr(1− Ĥ(η̃) < z)

= Pr(η̃ > Ĥ−1(1− z)) = 1− Ĥ(Ĥ−1(1− z)) = z.

Combining (22) and (23) we obtain (21), since

Pr(y(·) < z|s̃ = 0,W )=

∫
Pr(y(·) < z|s = κ(w), w)Pr(s = κ(w), w|s̃ = 0,W )dw. �

Lemma 4 reveals the key role that the uniform prior and additive noise play by
inducing a uniform distribution of signals. Nonetheless, a version of the GLP for
non-uniform priors approximately holds when noise levels are very small, in which
the weights on individual beliefs depend on the prior.

Lemma 5 (Generalized Laplacian Property for Non-uniform Prior). Assume agents
have a common prior with continuous density φ that has full support on Θ. Fix
any measurable subset of types W , any α1, α2 ∈ A with α1(w) ≤ α2(w) for all
w ∈ W , and any cutoff function κ : [w, w̄] → [inf Θ + ν/2, sup Θ − ν/2] such that
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α(w, s) = α1(w) if s < κ(w) and α(w, s) = α2(w) if s ≥ κ(w) for all w ∈ W. Then,

lim
ν→0

∫
W

(α2(w)− α1(w))Gw(z|κ;α,W )
φ(κ(w))f(w)∫

W
φ(κ(w))f(w)dw

dw = z − ᾱ(α1,W ) (24)

for all z ∈ [ᾱ(α1,W ), ᾱ(α2,W )], and the convergence as ν → 0 is uniform.

Proof of Lemma 5. The proof adapts the steps of the proof of Lemma 3 to the case
of a non-uniform prior. Specifically, we first show that the joint density of extended
types (s, w) conditional on s̃ = 0 and w ∈ W uniformly converges to

lim
ν→0

Pr(κ(w), w|s̃ = 0,W ) =
φ(k(w))f̂(w)∫

W
φ(κ(w))f̂(w)dw

, (25)

Given this, we show that y(κ,W, θ) is uniformly distributed in [0, 1] conditional on
s̃ = 0 so that condition (23) holds in the limit. Accordingly, combining (25) and
(23) we obtain (24).

To prove (25) note that the joint density of (s, w, θ) is now given by

Pr(s, w, θ|W ) = Pr(s|w, θ)Pr(w|W )Pr(θ) =

(
hw

(
s− θ
ν

)
1

ν

)(
f̂(w)∫

W
f̂(w)dw

)
φ(θ).

We obtain the marginal density of (s, w) by integrating the above expression, which
leads to, after applying the change of variable θ′ = s−θ

ν
,

Pr(s, w|W ) =

s+ν/2∫
s−ν/2

hw

(
s− θ
ν

)
1

ν

f̂(w)∫
W
f̂(w)dw

φ(θ)dθ

=

1/2∫
−1/2

hw (θ′)
f̂(w)∫

W
f̂(w)dw

φ(s− νθ′)dθ′ → f̂(w)∫
W
f̂(w)dw

φ(s) as ν → 0.

The limit is continuous, so pointwise convergence of distribution functions implies
uniform convergence. We obtain condition (25) by taking the limit as ν → 0,

Pr(s = s̃+ κ(w)|W ) =

∫
W

Pr(s̃+ κ(w), w|W )dw →
∫
W
φ(s̃+ κ(w))f̂(w)dw∫

W
f̂(w)dw

.

To show that (23) holds in the limit notice that the distribution of the virtual noise
converges to the mixture distribution

{
Hw

(
η̃ + κ(w)

ν

)
, φ(κ(w))f̂(w)∫

W φ(κ(w))f̂(w)dw

}
W
, which

does not depend on θ so η̃ is i.i.d. across agents and independent of θ. Hence,
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the argument in the last part of the proof of Lemma 3 applies.

Appendix B Omitted Proofs

B.1 Proofs of Results in Section 3

Proof of Proposition 1. The “if” part of the proof is based on the following steps.
First, we show that condition (3) implies that payoffs satisfy externality symmetry :
the infinitesimal change in the payoff differences of type w when type w′ switches
actions is the same as the change in payoff differences of type w′ when type w
switches actions. Second, we show that externality symmetry implies quasilinearity.

For the “only if” part, we construct a potential function for quasilinear payoffs
that satisfies condition (3).
“If ” part: Assume that there exists functional V satisfying condition (3) and focus
on how the infinitesimal change in V due to a switch of type w from a to a′ changes
when type w′ switches from a′′ to a′′′. Let strategy profiles α, α′, α′′ and α′′′ satisfy
α(w) = α′′(w) = a, α′(w) = α′′′(w) = a′, α(w′) = α′(w′) = a′′, α′′(w′) = α′′′(w′) =
a′′′ and α(w′′) = α′(w′′) = α′′(w′′) = α′′′(w′′) for all w′′ /∈ {w,w′}.

Abusing notation, let ᾱε(α) denote the aggregate action under mixture dis-
tribution (1 − ε)F + εδ(w′). Note that ᾱε(α) = ᾱε(α

′) and ᾱε(α
′′) = ᾱε(α

′′′) =
ᾱε(α) + ε(a′′′ − a′′), where

ᾱε(α) = (1− ε)
∫ w

w

α(w)dF (w) + εa′′ = (1− ε)ᾱ(α) + εa′′.

Given the mixture distribution F εε
ww′ = (1−ε−ε)F+εδ(w)+εδ(w′) the definition

of potential (3) implies that

lim
ε→0

(V (α′′′, F εε
ww′ , θ)− V (α′′, F εε

ww′ , θ))− (V (α′, F εε
ww′ , θ)− V (α, F εε

ww′ , θ))

ε
= ∆U(a′, a, ᾱε(α

′′), θ, w)−∆U(a′, a, ᾱε(α), θ, w)

= ∆U(a′, a, ᾱε(α) + ε(a′′′ − a′′), θ, w)−∆U(a′, a, ᾱε(α), θ, w)

We can further divide this difference by ε and obtain

lim
ε→0

1

ε
lim
ε→0

(V (α′′′, F εε
ww′ , θ)− V (α′′, F εε

ww′ , θ))− (V (α′, F εε
ww′ , θ)− V (α, F εε

ww′ , θ))

ε

= (a′′′ − a′′)∂∆U(a′, a, ᾱ(α), θ, w)

∂ā
.

Note that the RHS is well defined since U , and hence ∆U , is differentiable with
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respect to ā. A similar argument shows that

lim
ε→0

1

ε
lim
ε→0

(V (α′′′, F εε
ww′ , θ)− V (α′, F εε

ww′ , θ))− (V (α′′, F εε
ww′ , θ)− V (α, F εε

ww′ , θ))

ε

= (a′ − a)
∂∆U(a′′′, a′′, ᾱ(α), θ, w′)

∂ā
.

The definition of potential states that both limits must coincide, yielding the fol-
lowing externality symmetry condition: for all a, a′, a′′ and a′′′, all α and all w,w′,

(a′′′ − a′′)∂∆U(a′, a, ᾱ(α), θ, w)

∂ā
= (a′ − a)

∂∆U(a′′′, a′′, ᾱ(α), θ, w′)

∂ā
. (26)

We next prove that (26) requires payoffs to be additively separable in ā and w. That
is, they must take on the form U(a, ā, θ, w) = u(a, ā, θ) + v(a, θ, w) + u0(ā, θ, w). If
we set a′′ = a and a′′′ = a′, (26) implies that

∂∆U(a′, a, ᾱ(α), θ, w)

∂ā
=
∂∆U(a′, a, ᾱ(α), θ, w′)

∂ā
,

for all α and all w,w′. Hence, payoffs must be separable since the partial derivative
of payoff differences w.r.t. the aggregate action is independent of types.

Consider next the linearity of u(a, ā, θ) w.r.t. a. First, if there are just two ac-
tions a < a′ in A then we can always write separable payoffs in a linear form
au(ā, θ) by defining u(ā, θ) = 1

a′−a (u(a′, ā, θ)− u(a, ā, θ)) and adding to u0 the term
a′

a′−au(a, ā, θ) + a
a′−au(a′, ā, θ). In general, when there are more than two actions,

setting w = w′ in expression (26) implies that

∂

∂ā

∆U(a, a′, ā, θ, w)

(a− a′) =
∂

∂ā

∆U(a′′′, a′′, ā, θ, w)

(a′′′ − a′′) ,

i.e., ∂
∂ā

∆U(a,a′,ā,θ,w)
∆a

is independent of a and a′. Accordingly, we can write u as a linear
function of a.

Finally, since the existence of potential implies the above separability and linear-
ity restrictions, for Γθ to be a weighted potential game, there must exist a function
ψ(θ, w) such that ψ(θ, w)U(a, ā, θ, w) = u(a, ā, θ) + v(a, θ, w) + u0(ā, θ, w). But this
implies that U(a, ā, θ, w) satisfies (1), where c(θ, w) = 1/ψ(θ, w) > 1/ζ = ξ > 0.
That is, payoffs must be quasilinear.
“Only If” part: Given quasilinear payoffs consider the functional defined by (5). The
change in V under mixture distribution F ε

w when type w switches from action α(w)
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to a is given by∫ (1−ε)ᾱ(α)+εa

(1−ε)ᾱ(α)+εα(w)

u(z, θ)dz + ε (v(a, θ, w)− v(α(w), θ, w)) .

Dividing by ε and taking the limit, we obtain (3):

lim
ε→0

1

ε

(∫ (1−ε)ᾱ(α)+εa

(1−ε)ᾱ(α)+εα(w)

u(z, θ)dz + ε (v(a, θ, w)− v(α(w), θ, w))

)
.

=
∂

∂ε

∫ (1−ε)ᾱ(α)+εa

(1−ε)ᾱ(α)+εα(w)

u(z, θ)dz + v(a′, θ, w)− v(α(w), θ, w)

= (a− α(w))u(ᾱ(α), θ) + v(a′, θ, w)− v(α(w), θ, w) = ∆U(a, α(w), ᾱ(α), θ, w).

That is, the change in V in the limit coincides with the change in payoffs for type w,
up to scaling by a function c(θ, w) so V is a (weighted) potential of Γθ. In addition,
given that such a change in V is differentiable with respect to ε, it is straightforward
to check that the double limit (4) exists and is independent of the order of taking
limits.

B.2 Proofs of Results in Subsection 4.1

We use the following result to prove the existence of a potential maximizing strategy
profile. Let {W n

j }nj=1 be a partition of [w,w] into n intervals W n
j of the same length

and define the set of strategy profiles that assign the same action to types in each
Wj as

An = {α : α(w) = aj ∈ A for all w ∈ W n
j , j = 1, · · · , n}.

Lemma 6. For any α ∈ A and any ε > 0 there exist a sequence {αn} with αn ∈ An
that converges pointwise to α as n → ∞ in a subset of types with measure at least
1− ε.

Proof. A continuous function on [w,w] can be approximated pointwise by a sequence
of step functions on An. By Lusin’s theorem, for any ε > 0 a measurable function
on [w,w] is continuous in a compact subset of [w,w] with Lebesgue measure at least
w−w− ε. Accordingly, since F is a continuous distribution, for any α ∈ A and any
ε > 0 we can find a sequence of step functions {αn} that converges pointwise to α
in a subset of types with measure at least 1− ε.

Proof of Proposition 2. To prove the first part we show that the problem of max-
imizing potential coincides with the problem of maximizing ex-ante payoffs under
marginal beliefs given by (6). Maximizing potential implies finding a strategy profile
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that solves

max
α∈A

∫ ᾱ(α)

0

u(z, θ)dz +

∫ w

w

v(α(w), θ, w)dF (w). (27)

Consider the change of variable z = ᾱ(α, [w, w̄])(1 − F (w)) to the first integral.
Differentiating this expression w.r.t. w we obtain dz = −α(w)f(w)dw. In addition,
0 = ᾱ(α, [w,w]) and ᾱ(α) = ᾱ(α, [w,w]), which leads to objective function

w∫
w

α(w)u(ᾱ(α, [w, w̄])(1− F (w)), θ)f(w)dw +

w∫
w

v(α(w), θ, w)dF (w).

To prove that α∗ must coincide a.e. with a NE assume, by way of contradiction,
that α∗ maximizes potential but that there is a closed set of types of positive measure
that is not best responding to α∗. Accordingly, there must be an intervalW such that
almost all types w ∈ W are not best responding, i.e., ∆U(α∗(w), a, ᾱ(α∗), θ, w) < 0
for some a ∈ A. We can then find a measurable strategy profile α, with α(w′) =
α∗(w′) for all w′ /∈ W , such that ∆U(α∗(w), α(w), ᾱ(α∗), θ, w) < 0 for almost all
w ∈ W. This is because we can create a convergent sequence of step functions
by partitioning W into n equal-sized intervals and assigning to all types in each
subinterval the action that maximizes U given ᾱ(α∗) for the middle type in the
subinterval. For n large enough, such a strategy yields a higher payoff to almost all
w ∈ W since U is Lipschitz continuous.18

The difference in potential between α∗ and α can be written as

V (αP ,θ)− V (α, θ) =

ᾱ(α∗)−ᾱ(α)∫
0

u(ᾱ(α) + z, θ)dz +

∫
W

(v(α∗(w), θ, w)− v(α(w), θ, w)) dF (w).

Let z(w) =
∫
w′∈W 1{w′≥w}(α

∗(w′)−α(w′))dF (w′). Differentiating w.r.t. w we obtain
dz = −(α∗(w) − α(w))dF (w). Also, z(minW ) = ᾱ(α∗) − ᾱ(α) and z(maxW ) = 0.

18The measurability of α comes from the fact that it is the linear combination of a step function
and the restriction of a measurable function to the measurable set [w,w] \W.
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Hence, applying a change of variable we get that

V (α∗, θ)− V (α, θ)

=

∫
W

(α∗(w)− α(w))u
(
ᾱ(α) +

∫
W

1{w′≥w}(α
∗(w′)− α(w′))dF (w′), θ

)
dF (w)

+

∫
W

(v(α∗(w), θ, w)− v(α(w), θ, w)) dF (w)

=

∫
W

∆U
(
α∗(w), α(w), ᾱ(α) +

∫
W

1{w′≥w}(α
∗(w′)− α(w′))dF (w′), θ, w

)
dF (w).

Note that, as the mass ofW vanishes,
∫
W
1{w′≥w}(α

∗(w′)−α(w′))dF (w′) goes to zero
and ᾱ(α) uniformly converges to ᾱ(α∗), implying that the integrand in the above
expression converges to ∆U(α∗(w), α(w), ᾱ(α∗), θ, w) for all w ∈ W. Since ∆U is
Lipschitz continuous and ∆U(α∗(w), α(w), ᾱ(α∗), θ, w) < 0 for almost all w ∈ W ,
we can always find an interval W with small enough probability mass so that

∆U
(
α∗(w), α(w), ᾱ(α) +

∫
W

1{w′≥w}(α
∗(w′)− α(w′))dF (w′), θ, w

)
< 0

for almost all w ∈ W. But this implies that V (α∗, θ)− V (α, θ) < 0, a contradiction.
We conclude that α∗ implies best responding for almost all types.

Next we argue that we can switch the strategies of only those types that are
not best responding under α∗ to obtain a measurable strategy profile that is both
a NE and a potential maximizer. First note that changing the strategy of types
that are not maximizing payoffs is not going to affect aggregate action ᾱ(α∗) and
hence the payoffs of other players, so the latter would still be best responding under
the modified profile. In addition, if type w is not maximizing her payoff by playing
α∗(w) we can replace her strategy by any strategy satisfying

α′(w) ∈ arg max
a∈A

U(a, ᾱ(α∗), θ, w).

A is compact and U is continuous so this maximization problem has a solution. Since
the Lebesgue measure on [w,w] is complete, the modified profile is also measurable
since it coincides with a measurable function a.e. Accordingly, every type would
be best responding under the modified strategy profile, i.e., it represents a NE of
Γθ. Moreover, it maximizes potential given that it coincides a.e. with α∗. This also
implies that the existence of a potential maximizing profile α∗ implies the existence
of a NE.

Finally, we prove that set of solutions to the problem of maximizing potential
given by (27) is non-empty. To do so we first show that, if we restrict the maxi-
mization problem to strategies given by step functions in An, the set of potential
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maximizers is non-empty. Subsequently, we use the fact that measurable strate-
gies can be approximated by step functions (Lemma 6) to argue the existence of a
measurable strategy profile that maximizes potential.

Let Rn be endowed with the product topology. Note that An is a subset of
A and coincides with the product space An ⊂ Rn, which is compact since A is
compact. In addition, the continuity and boundedness of u, v and F implies that V
is well-defined, bounded and continuous in An. Hence, by Weiertrass extreme value
theorem, maxα∈An V (α, θ) has a solution for any n <∞. Let V n := maxα∈An V (α, θ).

The sequence {V 2n} converges as n→∞. This is because the subsets in {W 2n

j }2n

j=1

are unions of subsets in {W 2n+1

j }2n+1

j=1 , implying that A2n ⊂ A2n+1 and thus V 2n+1 ≥
V 2n for all n. Hence, {V 2n} is a monotone bounded sequence so it must converge.
Let L = limV 2n . Since A2n ⊂ A, there exist α ∈ A such that V (α, θ) ≥ V 2n for all
n, implying that V (α, θ) ≥ L since {V 2n} is a convergent sequence.

To finish the proof we argue that there does not exist α′ ∈ A such that V (α′, θ) >
L. Assume that there is such an α′. Then by Lemma 6 we can find a sequence {α′2n}
with α′2n ∈ A2n that converges pointwise to α′ except in a zero measure set. This
implies that lim ᾱ(α′2

n
) = ᾱ(α′) and, by the Lipschitz continuity of u, v and the

continuity of F ,

lim
n→∞

∫ ᾱ(α′2
n

)

0

u(z, θ)dz + lim
n→∞

∫ w

w

v(α′2
n

(w), θ, w)dF (w)

=

∫ ᾱ(α′)

0

u(z, θ)dz +

∫ w

w

v(α(w)′, θ, w)dF (w).

But then L = limV 2n ≥ limV (α′2
n
, θ) = V (α′, θ) > L, a contradiction.

Proof of Proposition 3. Existence of at least one NE that maximizes potential is
guaranteed by Proposition 2. In addition, payoffs exhibiting strictly increasing dif-
ferences in a and w implies that best responses are non-decreasing in w for any fixed
ā. Hence, NE strategy profiles must be (weakly) increasing in w. Since any potential
maximizer coincides a.e. with a NE by Proposition 2, a potential maximizing profile
must also be increasing a.e. in [w,w].

To show that there is an essentially unique potential maximizer it suffices to
show that there is an essentially unique potential maximizing NE for each θ, except
perhaps in a countable subset of Θ.We do so by showing that, if at some θ there are
two or more potential maximizing NE that differ in a positive measure set of types,
then there exist θ′ < θ and θ′′ > θ such the potential maximizing NE is essentially
unique in (θ′, θ) ∪ (θ, θ′′). Since Θ can only be partitioned in a countable number of
non-degenerate intervals then the set of θ at which the potential maximizing NE is
not essentially unique must be countable, i.e., it must have Lebesgue measure zero.

First, we argue that there cannot be two NE at θ that exhibit the same aggregate
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action ā∗ but differ in a positive measure set of types. To see why, assume that α1

and α2 are two NE with the same aggregate action ā∗. If they were to differ in a
positive measure of types W it must be that α1(w) and α2(w) yield the same level
of utility, i.e., α1(w)u(ā∗, θ) + v(α1(w), θ, w) = α2(w)u(ā∗, θ) + v(α2(w), θ, w) for all
w ∈ W. This implies that

v(α1(w), θ, w)− v(α2(w), θ, w)

α1(w)− α2(w)
= −u(ā∗, θ)

for all w ∈ W. But notice that the LHS of this equality is strictly increasing in w
since payoffs exhibit strict increasing differences by condition (i) in Assumption 1
while the RHS is constant in w. Accordingly, there cannot exist two types for which
the equality holds and hence all types, except possibly one, have a unique best
response to aggregate action ā∗.

Second, strict increasing differences w.r.t. a and ā imply that NE are ordered.
Specifically, if there exist two NE profiles α1 and α2 at θ, with α2 having a higher
aggregate action than α1, then α2(w) ≥ α1(w) for all w, with strict inequality for a
positive mass of types. This is because condition (i) in Assumption 1 ensures that
players’ best responses are increasing in the aggregate action.

Third, we show that, for any two increasing strategy profiles satisfying α2(w) ≥
α1(w) for all w with strict inequality for a positive measure of types, the difference
in potential is increasing in θ. By Proposition 2 the difference in potential is given
by

w∫
w

(
U
(
α2(w), ᾱ(α2, [w,w])(1− F (w)), θ, w

)
− U

(
α1(w), ᾱ(α1, [w,w])(1− F (w)), θ, w

))
dF (w).

Note that ᾱ(α2, [w, w̄]) ≥ ᾱ(α1, [w, w̄]) for all w (except possibly for the highest
type), with strict inequality for a positive mass of types. By condition (ii) in
Assumption 1 the integrand is increasing in θ for all w s.t. α2(w) ≥ α1(w) and
ᾱ(α2, [w,w]) ≥ ᾱ(α1, [w,w]), and strictly so if one of the inequalities is strict. Since
these inequalities are satisfied for all types and strictly so for a positive measure of
them, the difference in potential between α2 and α1 is strictly increasing in θ.

Now assume that there exist multiple potential-maximizing NE at θ and let α∗
be the largest of them, i.e., the one exhibiting the highest individual actions for all
types. Next, consider an infinitesimal increase in θ. Such an increase leads to α∗
yielding a higher potential than any smaller strategy profile, since their differences
in potential increase with θ. This breaks the tie among all potential maximizing
profiles in favor of α∗. Next, for any small ε > 0 consider any profile α > α∗

such that α(w) − α∗(w) > ε for all w in a set of types W of measure at least ε.
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Since α∗ is the largest potential maximizer at θ, the Lipschitz continuity of u, v
and the continuity of F implies that α∗ still yields a higher potential than α after
an infinitesimal increase in θ. Accordingly, such an increase leads to an essentially
unique potential maximizer.

A symmetric argument applies to the case of an infinitesimal drop in θ. Accord-
ingly, there is an essentially unique maximizer in an open neighborhood (θ′, θ) ∪
(θ, θ′′).

The existence of the mapping αP directly follows from the monotonicity of NE
strategies w.r.t. w and the essential uniqueness of potential-maximizing NE.

B.3 Proofs of Results in Subsection 4.2

The proofs of Propositions 4 and 5 first focus on the uniform prior case and then
resort to the following lemma about the uniform convergence of individual beliefs
as noise vanishes to extend the results to any well-defined prior.

Lemma 7. Let Jw′|w(s′|s; ν, φ) denote the cdf of signals of type w′ agents conditional
on an agent of type w receiving signal s, for given noise level ν and common prior
φ. Given any s ∈ [inf Θ + ν, sup Θ− ν] and any sequence sν such that s−sν

ν
= c for

some constant |c| < 1, as ν → 0, |Jw′|w(sν |s; ν, φ) − Jw′|w(sν |s; ν, U [inf Θ, sup Θ])|
converges uniformly to zero.

Proof of Lemma 7. Let sw denote the random variable representing the signals re-
ceived by agents of type w. The beliefs about sw′ of an agent of type w conditional
on receiving s can be expressed as

Jw′|w(s′|s; ν, φ) =
Pr(s′w < s′, sw = s)

Pr(sw = s)
=

s+ν/2∫
s−ν/2

Hw′
(
s′−θ
ν

)
hw
(
s−θ
ν

)
1
ν
φ(θ)dθ

s+ν/2∫
s−ν/2

hw
(
s−θ
ν

)
1
ν
φ(θ)dθ

Using the change of variable θ′ = s−θ
ν
, for any s′ = s− cν we have that

Jw′|w(s′|s; ν, φ) =

1/2∫
−1/2

Hw′ (θ
′ − c)hw (θ′)φ(s− νθ′)dθ′

1/2∫
−1/2

hw (θ′)φ(s− νθ′)dθ′

→
1/2∫

−1/2

Hw′ (θ
′ − c)hw (θ′) dθ′ = Jw′|w(s′|s; ν, U [inf Θ, sup Θ]),
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as ν → 0. Since Jw′|w is a cdf and the limit is continuous, pointwise convergence
implies uniform convergence.

Proof of Proposition 4. The proof logic is as follows. First, we argue for the uniform
prior case that, given any ν > 0, the set of equilibrium strategy profiles has a largest
and a smallest element, each involving monotone strategies.

Second, we show that there is at most one equilibrium in monotone strategies, up
to differences in behavior at discontinuities (signal cutoffs). Since increasing func-
tions have at most a countable number of discontinuities, the smallest and largest
equilibria are essentially the same, that is, they coincide for each w except possibly
in a zero measure set of signals. These arguments extend to the non-uniform prior
case by the uniform convergence of beliefs (Lemma 7).

Consider the following ‘ex-ante’ version of the game in which the (infinitesimal)
mass of players with type w and signal s = θ + νη is determined by the joint
distribution of (w, θ, η), which has density hw(η)f(w) 1

θ−θ . A strategy profile in this
game is a measurable function α : [w,w] × [θ − ν/2, θ + ν/2] → A. Let ᾱν(α; θ)
denote the average action given α and θ when the noise scale is ν. It is given by

ᾱν(α; θ) =

w∫
w

1/2∫
−1/2

α(w, θ + νη)hw(η)dηdF (w). (28)

The payoff of a player of type w and signal s that takes action a is given by
E[U(a, ᾱν(α; θ), θ, w)|s], where the expectation is taken over θ conditional on s. This
game is identical to the Bayesian game in which agents have a common uniform prior
about θ and the exact LLN applies within each type. Hence, the set of NE in the
game corresponds to the set of Bayesian NE of the Bayesian game.

This game satisfies the definition of supermodular game in Milgrom and Roberts
(1990). Specifically, since we restrict attention to measurable strategy profiles
the strategy space is a complete lattice. In addition, payoff functions are order-
continuous in a and in α, and they exhibit increasing differences by Assumption 1.19

Accordingly, Theorem 5 in Milgrom and Roberts (1990) implies that the game has a
19E[U(a, ᾱν(α; θ), θ, w)|s] is order-continuous in α if

lim
α∈C,α↓inf(C)

E[U(a, ᾱν(α; θ), θ, w)|s] = E[U(a, ᾱν(inf(C); θ), θ, w)|s]

and
lim

α∈C,α↑sup(C)
E[U(a, ᾱν(α; θ), θ, w)|s] = E[U(a, ᾱν(sup(C); θ), θ, w)|s]

for any chain C in the set of measurable strategy profiles. This is true because U is Lipschitz
continuous in the average action and the distributions of θ and (s, w) conditional on s are con-
tinuous, which imply that limα∈C,α↓inf(C) ᾱ

ν(α; θ) = ᾱν(inf(C); θ) and limα∈C,α↑sup(C) ᾱ
ν(α; θ) =

ᾱν(sup(C); θ) for all θ ∈ Θ.
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smallest equilibrium αl and a largest equilibrium and αm such that any equilibrium
profile α satisfies αl(w, s) ≤ α(w, s) ≤ αm(w, s).

In addition, fixing the actions of all agents, an agent’s difference in expected
payoffs conditional on s from choosing a versus a′ < a is increasing in s since the
aggregate action is kept fixed while θ is higher (in expectation) at higher signal pro-
files. That is, expected payoffs exhibit increasing differences w.r.t. a and the profile
of signals for every w. Hence, Theorem 6 in Milgrom and Roberts (1990) applies: the
smallest and largest equilibria are nondecreasing w.r.t. the profile of signals. Since
an agent’s strategy can only depend on her own signal, this implies that αl and αm
are monotone functions of s. A similar argument applies to monotonicity w.r.t. w.

To show that there is at most one equilibrium in monotone strategies, we first
establish the following translation result. Given δ > 0, let αδ represent a “rightward
shift” of strategy profile α defined by

αδ(w, s) =

{
α(w, inf Θ− ν/2) s < inf Θ− ν/2 + δ

α(w, s− δ) s ≥ inf Θ− ν/2 + δ.

The next lemma shows that if we simultaneously switch agents’ strategies from α to
αδ and their signals from s to s+δ then an agent’s conditional expectation of payoff
differences between a higher action a and a lower action a′ < a strictly increases.
[We omit the dependence of α on ν to ease notation.]

Lemma 8. There exists ν̄ > 0 such that, for any α ∈ A, if ν < ν̄ then

E[∆U(a, a′, ᾱν(αδ; θ), θ, w)|s+ δ]−E[∆U(a, a′, ᾱν(α; θ), θ, w)|s] ≥ K(a−a′)δ (29)

for all actions a and a′ < a, all w ∈ [w, w̄], all s ∈ [θ − ν/2, θ + ν/2] and all
δ ∈ (0, sup Θ− s− ν/2].

Proof. For all ν < ν̄ := min{θ − inf Θ, sup Θ − θ̄}, the support of the distributions
of θ and other player signals conditional on s ∈ [θ − ν/2, θ̄ + ν/2] are respectively
[s − ν/2, s + ν/2] and [s − ν, s + ν]. In such a case, the conditional density of θ
is hw

(
s−θ
ν

)
/ν. Also notice that, conditional on θ, the signals of other agents are

independent of s, with densities hw′
(
s′−θ
ν

)
/ν. Accordingly, aggregate action (28)

can be expressed as

ᾱν(α; θ) =

w∫
w

θ+ν/2∫
θ−ν/2

α(w, s′)hw

(
s′ − θ
ν

)
1

ν
ds′dF (w′). (30)

By Assumption 1, for any s ∈ [θ−ν/2, θ+ν/2] and δ ∈ (0, sup Θ−s−ν/2] we obtain

39



the following inequality using the changes of variables θ′ = θ + δ and s′′ = s′ + δ:

E[∆U(a, a′, ᾱν(α; θ), θ, w)|s] +K(a− a′)δ =

s−ν/2∫
s+ν/2

∆U

a, a′, w∫
w

θ+ν/2∫
θ−ν/2

α(w′, s′)hw′

(
s′ − θ
ν

)
ds′

ν
dF (w′), θ, w

hw

(
s− θ
ν

)
dθ

ν
+K(a− a′)δ

≤
s−ν/2∫
s+ν/2

∆U

a, a′, w∫
w

θ+ν/2∫
θ−ν/2

α(w′, s′)hw′

(
s′ − θ
ν

)
ds′

ν
dF (w′), θ + δ, w

hw

(
s− θ
ν

)
dθ

ν

=

s+δ−ν/2∫
s+δ+ν/2

∆U

a, a′, w∫
w

θ′−δ+ν/2∫
θ′−δ−ν/2

α(w′, s′)hw′

(
s′ + δ − θ′

ν

)
ds′

ν
dF (w′), θ′, w

hw

(
s+ δ − θ′

ν

)
dθ′

ν

=

s+δ−ν/2∫
s+δ+ν/2

∆U

a, a′, w∫
w

θ′+ν/2∫
θ′−ν/2

α(w′, s′′ − δ)hw′
(
s′′ − θ′
ν

)
ds′′

ν
dF (w′), θ′, w

hw

(
s+ δ − θ′

ν

)
dθ′

ν

= E[∆U(a, a′, ᾱν(αδ; θ), θ, w)|s+ δ].20

Next, note that if α is an equilibrium then α(w, s) = 0 for all s ≤ θ − ν/2 and
α(w, s) = amax if s > θ + ν/2. This is because, for any action a > 0, Assumption 2
implies that ∆U(a, 0, θ, w) < 0 for all θ < θ. Hence, since θ ≤ s + ν/2, it must be
that E[∆U(a, 0, ᾱν(α; θ), θ, w)|s] < 0 for all s < θ − ν/2. A symmetric argument
applies to signals above θ̄ + ν/2.

We finish the proof by arguing that αl(w, s) = αm(w, s) for almost all (w, s)
using the above translation result. Assume first, by way of contradiction, that
αl(w, s) < αm(w, s) for some signal s and some type w and that there exists a signal
shift δ > 0 such that αl(w, s + δ) = αm(w, s) or, if αm(w, ·) is discontinuous at
s, αl(w, s + δ) ∈ [lim inf αm(w, s), lim sup αm(w, s)]. Note that the monotonicity
of αl(w, ·) and αm(w, ·) means that their lim inf and lim sup exist. Next, consider
among all pairs (w, s) at which the two equilibria differ the largest signal shift δ̂ that

20The change of variable θ′ = θ + δ works as long as the lower integration limit is well-defined,
i.e., s + δ + ν/2 ≤ sup Θ, which is guaranteed by δ ≤ sup Θ − s − ν/2. The change of variable
s′′ = s′ + θ works as long as θ′ − δ ≥ inf Θ, otherwise α(s′′ − δ, w′) is not well-defined. Since
θ′ ≥ s+ δ − ν/2 and s ≥ θ− ν/2 we have that θ′ − δ ≥ θ− ν. Hence, θ′ − δ ≥ inf Θ for any ν < ν.
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would be required to make αl(w, s) ‘equal’ to αm(w, s). That is δ̂ is given by

δ̂ = max
{
δ : αl(w, s+ δ) ∈ [lim inf αm(w, s), lim sup αm(w, s)]

for some (w, s) s.t. αl(w, s+ δ) 6= αm(w, s+ δ)
}
.

It is straightforward to check that αm(w, s − δ̂) ≤ αl(w, s) for all s, w. Let (ŵ, ŝ)
be one of the signal-type pairs associated with δ̂. Note that, by the above argu-
ment, we must have that ŝ + δ̂ ∈ [θ − ν/2, θ + ν/2], otherwise αl(ŝ + δ̂, ŵ) =
αm(ŝ + δ̂, ŵ) ∈ {0, amax}. Also note that if α is an equilibrium we must have that
E[∆U(a, α(w, s), ᾱν(α; θ), θ, w)|s] ≤ 0 for all a ∈ A. Hence, by Lemma 8, we arrive
to the following contradiction:

0 ≤ E[∆U(αm(ŵ, ŝ), αl(ŵ, ŝ), ᾱν(αm; θ), θ, ŵ)|ŝ]

< E[∆U(αm(ŵ, ŝ), αl(ŵ, ŝ), ᾱν(αm
δ̂

; θ), θ, ŵ)|ŝ+ δ̂]

≤ E[∆U(αm(ŵ, ŝ), αl(ŵ, ŝ), ᾱν(αl; θ), θ, ŵ)|ŝ+ δ̂]

≤ E[∆U(αm(ŵ, ŝ), αl(ŵ, ŝ+ δ̂), ᾱν(αl; θ), θ, ŵ)|ŝ+ δ̂] ≤ 0.

The third inequality comes from Assumption 1 and the fact that αm(ŵ, ŝ) > αl(ŵ, ŝ)
and ᾱ(αl) ≥ ᾱ(αm

δ̂
) since αm(w, s−δ̂) ≤ αl(w, s) for all s, w. The last two inequalities

follow from αl(ŵ, ŝ+ δ) being a best response of type ŵ to αl under ŝ+ δ̂.
Hence, the only possibility left for αl(w, s) < αm(w, s) is that there is no signal

shift δ > 0 that satisfies αl(w, s + δ) ∈ [lim inf αm(w, s), lim sup αm(w, s)]. Given
that both αl(w, ·) and αm(w, ·) are increasing this can only happen in the set of s
at which they are discontinuous, which has zero measure.

Proof of Proposition 5. We first prove under a uniform prior that equilibrium strat-
egy profiles converge pointwise a.e. to some strategy profile αG. Specifically, we show
that if αν is a sequence of equilibrium strategy profiles in the global game indexed
by ν → 0, given any ε > 0 then there exists ν̄ > 0 such that, for all ν, ν ′ satisfying
ν̄ > ν > ν ′ > 0, |αν(w, s)− αν′(w, s)| < ε for almost all s and all w.

For any monotone strategy profile α let Sd(α) be the set of signals at which α(w, ·)
is discontinuous for a positive measure of types w. Since α(w, ·) is monotone, Sd(α)
is at most countable, i.e., it has zero measure for all ν > 0. Recall that, conditional
on an agent receiving s, the profile of realized signals must lie inside [s − ν, s + ν].
Hence, given that signals and types are continuously distributed, the mass of agents
with signals that belong to Sd(α) conditional on a player receiving signal s /∈ Sd(α)
must be zero for all ν ≥ 0, that is, even in the limit since [s − ν, s + ν] → {s} as
ν → 0. But this implies that the aggregate action ᾱν(α; θ) given by (28) converges
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uniformly to

ᾱ(α; s) :=

w∫
w

α(w, s)dF (w).

To see why, notice that, since θ ∈ [s − ν/2, s + ν/2], by the monotonicity of α we
can bound ᾱν(α; θ) as follows:

w∫
w

1/2∫
−1/2

α(w, s−ν/2+νη)hw(η)dηdF (w) ≤ ᾱν(α; θ) ≤
w∫
w

1/2∫
−1/2

α(w, s+ν/2+νη)hw(η)dηdF (w).

Since s±ν/2+νη ∈ [s−ν, s+ν] for all η and s /∈ Sd(α) the set of pairs (w, s±ν/2+νη)
at which α is discontinuous has zero measure so both bounds must converge to
ᾱ(α; s). Moreover, α(w, s− ν/2 + νη) and α(w, s + ν/2 + νη) respectively increase
and decrease as ν → 0 for all η ∈ (−1/2, 1/2), implying that the lower bound
monotonically increases and the upper bound monotonically decreases. That is, the
convergence of ᾱν(α; θ) to ᾱ(α, s) must be uniform.

In turn, by the Lipschitz continuity of ∆U , the uniform convergence of ᾱν(α; θ)
implies that expected payoff differences between any two actions conditional on
receiving s /∈ Sd(α) uniformly converge as ν → 0 for any fixed monotone profile α.
That is, for all s /∈ Sd(α) and all w and all ε > 0, there is ν̂ > 0 such that

|Eν [∆U(α(w, s), a′, ᾱν(α; θ), θ, w)|s]− Eν′ [∆U(α(w, s), a′, ᾱν
′
(α, θ), θ, w)|s]| < ε

for all ν, ν ′ < ν̂, where Eν denotes the expectation operator under noise level ν.
Equipped with this result we next argue that the equilibrium profiles must con-

verge. We do so by showing that for all ν, ν ′ < ν̂ the largest signal shift needed to
make αν equal to αν′ is O(ε). To account for discontinuities in αν

′ , define such a
signal shift as

δ̂ = max
{
δ : αν(w, s+ δ) ∈ [lim inf αν

′
(s, w), lim sup αν

′
(s, w)]

for some (w, s) s.t. αν(w, s+ δ) 6= αν
′
(w, s+ δ)

}
.

Assume that δ̂ > 0 (otherwise we can apply a similar argument by switching αν
and αν′). Note that αν′(w, s− δ̂) ≤ αν(w, s) for all s, w. Fix signal-type pair (ŵ, ŝ)
associated with the signal shift δ̂, implying that αν′(w, s) > αν(w, s). By Lemma 8
and the fact that αν , αν′ are respectively the equilibrium strategies under noise levels
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ν, ν ′, we have that

0 ≤ Eν′ [∆U(αν
′
(ŵ, ŝ), αν(ŵ, ŝ), ᾱ(αν

′
), θ, ŵ)|ŝ]

≤ Eν′ [∆U(αν
′
(ŵ, ŝ), αν(ŵ, ŝ), ᾱ(αν

′

δ̂
), θ, ŵ)|ŝ+ δ̂]−K(αν

′
(ŵ, ŝ)− αν(ŵ, ŝ))δ̂

≤ Eν′ [∆U(αν
′
(ŵ, ŝ), αν(ŵ, ŝ), ᾱ(αν), θ, ŵ)|ŝ+ δ̂]−K(αν

′
(ŵ, ŝ)− αν(ŵ, ŝ))δ̂

≤ Eν [∆U(αν
′
(ŵ, ŝ), αν(ŵ, ŝ), ᾱ(αν), θ, ŵ)|ŝ+ δ̂] + ε−K(αν

′
(ŵ, ŝ)− αν(ŵ, ŝ))δ̂

≤ Eν [∆U(αν
′
(ŵ, ŝ), αν(ŵ, ŝ+ δ̂), ᾱ(αν), θ, ŵ)|ŝ+ δ̂] + ε−K(αν

′
(ŵ, ŝ)− αν(ŵ, ŝ))δ̂

≤ ε−K(αν
′
(ŵ, ŝ)− αν(ŵ, ŝ))δ̂.

Since αν′(ŵ, ŝ)− αν(ŵ, ŝ) is bounded by amax then δ̂ ≤ ε
Kamax

. That is, equilibrium
strategies converge to some limit profile αG(w, s) for almost all s and w.

Finally, notice that the convergence of equilibrium strategies and the uniform
convergence of expected payoff differences, combined with the fact that s → θ as
ν → 0, imply that

lim
ν→0

Eν [∆U(αν(w, s), a, ᾱν(αν ; θ), θ, w)|s] = E[∆U(αG(w, s), a, ᾱ(αG(·, s)), θ, w)|s = θ]

= ∆U(αG(w, θ), a, ᾱ(ᾱ(αG(·, θ)), θ, w),

for almost all s. Since αν is an equilibrium on Γνθ , we have that

Eν(∆U(αν(w, s), a, ᾱν(αν ; θ), θ, w)|s) ≥ 0,

for all s and all w. By the continuity of ∆U the above convergence implies that

∆U(αG(w, θ), a, ᾱ(αG(·, θ)), θ, w) ≥ 0,

for almost all θ and all w. That is, αG is a NE of Γθ for almost all θ. By Lemma 7
the result extends to the non-uniform prior case.

B.4 Proofs of Results in Subsection 4.3

Proof of Theorem 1. To prove the equivalence between αP and αG for almost all
(w, θ), we need to focus on the case when Γθ has multiple NE that differ in a
positive measure set of types but it has an essentially unique potential maximizer.
This is because (i) when Γθ has an essentially unique NE it must coincide a.e. with
both αP (·, θ) and αG(·, θ) by Propositions 3 and 5; and (ii) these propositions also
imply that the set of θ at which Γθ has multiple potential maximizers that differ in a
positive measure set of types or at which the global games selection is not essentially
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unique has measure zero.
Focus first on the uniform-prior case. The proof applies the Generalized Lapla-

cian property (Lemma 3) to show that if αP (·, θ) is the essentially unique potential
maximizer of Γθ then

lim
ν→0

Eν [∆U(αP (w, s), a, ᾱν(αP ; θ), θ, w)|s] > 0

for all a 6= αP (w, θ), all s ∈ (inf Θ + ν/2, sup Θ − ν/2) and almost all w, where
ᾱν(αP ; θ) represents the aggregate action given θ when agents follow strategies
αP (w, s). But, as shown in the proof of Proposition 5, these conditions fully char-
acterize the limit equilibrium in the global game, which is essentially unique by
Proposition 4. Hence, it must be that αP (w, θ) = αG(w, θ) for almost all w. Since,
the potential maximizer is essentially unique for almost all θ then αG and αP must
be equal except possibly in a measure zero set of (w, θ).

Fix any θ ∈ (inf Θ, sup Θ) for which there is an essentially unique potential
maximizer. For any given action a ∈ A and any subset of types W with positive
measure such that αP (w, θ) > a for all w ∈ W , let α(w) = a if w ∈ W and
α(w) = αP (w, θ) if w /∈ W. Since αP is the unique potential maximizer, we have
that

V (αP , θ)− V (α, θ) =

ᾱ(αP (·,θ))∫
ᾱ(α)

u(z, θ)dz +

∫
W

(v(αP (w, θ), θ, w)− v(a, θ, w)) dF (w) > 0.

Let α(w, s) represent the monotone strategy in the global game in which agents of
types in W switch from a to αP (w, θ) using cutoff function κ(w) = θ for all w ∈ W ;
while types in WC := [w,w]\W choose α(w, s) = αP (w, θ) for all s. We can express
their expected payoff differences conditional both on s = κ(w) and on θ as follows:

Eν [∆U(αP (w, s), a, ᾱν(α; θ), θ, w)|s = θ, θ]

=

ᾱ(αP (·,θ),W )∫
a

(αP (w, θ)− a)u
(
ᾱ(αP (·, θ),WC)F (WC) + zF (W ), θ

)
dGw(z|κ;α,W )

+ (v(αP (w, θ), θ, w)− v(a, θ, w)) ,

where z represents the aggregate action of agents with types inW and F (WC), F (W )
respectively denote the probability mass of WC and W. Integrating the above ex-
pression over types in W and applying Lemma 3 we obtain
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∫
W

Eν [∆U(αP (w, s), a, ᾱν(α; θ), θ, w)|s = θ, θ]dF (w|w ∈ W )

=

ᾱ(αP (·,θ),W )∫
a

u
(
ᾱ(αP (·, θ),WC)F (WC) + zF (W ), θ

)
dz

+

∫
W

(v(αP (w, θ), θ, w)− v(a, θ, w)) dF (w|w ∈ W ). (31)

Applying the change of variable z′ = ᾱ(αP (θ, ·),WC)F (WC) + zF (W ) and since
dF (w|w ∈ W ) = dF (w)/F (W ) we have that∫

W

Eν [∆U(αP (w, s), a, ᾱν(α; θ), θ, w)|s = θ, θ]dF (w|w ∈ W )

=

ᾱ(αP (·,θ))∫
ᾱ(α)

u(z′, θ)
dz′

F (W )
+

∫
W

(v(αP (w, θ), θ, w)− v(a, θ, w))
dF (w)

F (W )

=
1

F (W )

(
V (αP , θ)− V (α, θ)

)
> 0. (32)

Since αP (w, θ) ≥ α(w) for all w, with strict inequality for all w ∈ W , we have that
ᾱ(αP (·, θ)) > ᾱν(α; θ). Hence, by strict increasing differences we have that

Eν [∆U(αP (w, s), a,ᾱ(αP (·, θ)), θ, w)|s = θ, θ]

> Eν [∆U(αP (w, s), a, ᾱν(α; θ), θ, w)|s = θ, θ].

Also, as ν → 0 expected payoff differences conditional on s = θ and θ converge to
the expected payoff differences conditional on only s = θ since s→ θ. Accordingly,

lim
ν→0

∫
W

Eν [∆U(αP (w, s), a, ᾱ(αP (·, θ)), θ, w)|s = θ]dF (w|w ∈ W ) > 0. (33)

A symmetric argument shows that (33) for any a > αP (w, θ). Hence, inequality (33)
is satisfied for any a and any subsetW such that either a < αP (w, θ) or a > αP (w, θ),
implying that

lim
ν→0

Eν [∆U(αP (w, s), a, ᾱ(αP (·, θ)), θ, w)|s = θ] > 0

for almost all w and all a 6= αP (w, θ). Since αP (w, ·) is monotone it is continuous
a.e., implying that the set of θ at which a positive mass of agents have a disconti-
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nuity in their strategies has measure zero. Hence, we have that limν→0 ᾱ
ν(αP ; θ) =

ᾱ(αP (·, θ)) for almost all θ ∈ (inf Θ, sup Θ), and the convergence is uniform. By the
Lipschitz continuity of ∆U , this implies that

lim
ν→0

Eν [∆U(αP (w, s), a, ᾱν(αP ; θ)), θ, w)|s] > 0

for almost all w and all a 6= αP (w, θ).
Finally, to prove the proposition under a general prior it suffices to show that (31)

and (32) hold in the limit. This is because, in such a case, all the above arguments
continue to apply when the prior is not uniform.

Note that the signal cutoff function is set to be κ(w) = θ for all W. Given such
a cutoff function, we have that

φ(κ(w))f(w)∫
W
φ(κ(w))f(w)dw

=
f(w)∫

W
f(w)dw

= f(w|w ∈ W ).

Hence, applying Lemma 5 with κ(w) = θ for all W and taking the limit as ν → 0
we obtain (31) and (32).

B.5 Proofs of Results in Section 5

Proof of Lemma 2. We prove the existence and continuity of B(ā, v) by first showing
that a solution to the maximization problem exists if we restrict attention to step
functions and then applying Lemma 6 to argue that any measurable function in Aā
can be approximated by a sequence of step functions.

Let Anā,ε denote the set of step functions in An with aggregate action within ε of
ā. That is,

Anā,ε = {α ∈ An : |ᾱ(α)− ā| ≤ ε}.
Anā,ε is compact and non-empty for large enough n. This is because if the interval
partition {W n

j }nj=1 of the type space is fine enough then, by the continuity of F , we
can find a vector of actions (a1, · · · , an) ∈ An that yields an aggregate action within
ε of ā. Hence,

max
α∈Anā,ε

∫
w

v(α(w), θ, w)dF (w)

has a solution. Moreover, since the objective function is bounded and A2n

ā,ε ⊂ A2(n+1)

ā,ε

the value function associated with the sequence of constraint sets {A2n

ā,ε} is increasing
in n and bounded so it converges for all ā and ε > 0.

Next, note that, by Lemma 6 and the continuity of v and F , for any α ∈ Aā and
any ε > 0 we can find a sequence {αn} with αn ∈ Anā,ε such that

lim
n→∞

∫
w

v(αn(w), θ, w)dF (w) =

∫
w

v(α(w), θ, w)dF (w).
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Accordingly,

lim
ε→0

lim
n→∞

max
α∈A2n

ā,ε

∫
w

v(α(w), θ, w)dF (w) = max
α∈Aā

∫
w

v(α(w), θ, w)dF (w) := B(ā, θ).

That is, B(ā, θ) is well-defined given that the limit in the left hand side exists. We
use a similar argument to show the continuity of B(·, θ). Note that, for any ε′ < ε
and any α′ ∈ Aā+ε′ , we can find a sequence {α′n} with α′n ∈ Anā,ε such that

lim
n→∞

∫
w

v(α′n(w), θ, w)dF (w) =

∫
w

v(α′(w), θ, w)dF (w)

and limn→∞ ᾱ(α′n) = ā+ ε′. Letting ε = 2ε′ we get that

lim
ε′→0

max
α′∈Aā+ε′

∫
w

v(α(w), θ, w)dF (w) = lim
ε→0

lim
n→∞

max
α∈A2n

ā,2ε

∫
w

v(α(w), θ, w)dF (w)

= max
α∈Aā

∫
w

v(α(w), θ, w)dF (w)

We next show that NE aggregate actions must satisfy (14). If α∗ is a NE with
aggregate action ā∗ then, for all a and w

α∗(w)u(ā∗, θ) + v(α∗(w), θ, w) ≥ au(ā∗, θ) + v(a, θ, w).

Integrating these conditions across types we get that, for any strategy profile α ∈ A,

ā∗u(ā∗, θ) +

∫
w

v(α∗(w), θ, w)dF (w) ≥ ᾱ(α)u(ā∗, θ) +

∫
w

v(α(w), θ, w)dF (w). (34)

But notice that, for any given aggregate action ā ∈ [0, amax] and any α ∈ Aā, we
have that

∫
w
α(w)u(ā, θ)dF (w) = āu(ā, θ). Hence, by applying inequality (34) to the

set of strategy profiles Aā∗ we obtain

α∗ ∈ arg max
α∈Aā∗

∫
w

v(α(w), θ, w)dF (w). (35)

That is, NE α∗ yields an average idiosyncratic payoff equal to B(ā∗, θ). Accordingly,
(34) implies that the NE aggregate action solved the following fixed point problem:

ā∗ ∈ arg max
ā∈[0,amax]

(
āu(ā∗, θ) +B(ā, θ)

)
.

This proves the “if” part. To prove the “only if” part notice that if α∗ satisfies
(35) then it must yield the same average payoff as any NE profile associated with
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aggregate action ā∗. But then individual payoffs given ā∗ must be maximized for all
but a subset of types with measure zero, otherwise such NE would violate (34), and
hence, the aggregate action of the two profiles must coincide.

Proof of Theorem 2. First, note that the objective function in (14) is continuous
in ā. Next, if u(·, θ) is strictly increasing and B(·, ·) exhibits strictly increasing
differences then, for any fixed ā∗, the objective function in (14) also has strictly
increasing differences in ā and θ. Finally, [0, amax] is compact.

Accordingly, by Topkis monotonicity theorem the correspondence

m(ā∗, θ) := arg max
ā∈[0,amax]

(
āu(ā∗, θ) +B(ā, θ)

)
is increasing in θ in the strong set order. In addition, m(ā∗, θ) is non-empty and
upper hemicontinuous by Berge’s maximum theorem.

Finally, notice that minm(0, θ) ≥ 0 and maxm(amax, θ) ≤ amax for all θ. That
is, the correspondence m(amax) ‘crosses’ the diagonal from above at the smallest and
largest crossing values of ā∗. But since the NE aggregate actions satisfy ā∗ ∈ m(ā∗, θ),
i.e., they are represented by the values at which m(·, θ) crosses the diagonal, the
smallest and largest crossing values must go up as m(·, θ) increases with θ.

Proof of Theorem 3. Given any α ∈ int(A), consider an infinitesimal increase da of
all individual actions α(w). Since v is Lipschitz continuous it is differentiable almost
everywhere, the change in average idiosyncratic payoffs for almost all α ∈ int(A) is
given by ∫ w

w

∂v(a, θ, w)

∂a

∣∣∣
a=α(w)

dF (w).

But notice that such an increase in individual actions implies that the aggregate
action also increases by da. Hence, we must have that

∂B(ā, θ)

∂ā
≥ max

α∈int(Aā)

∫ w

w

∂v(a, θ, w)

∂a

∣∣∣
a=α(w)

dF (w),

given that we can always find a new profile α′ ∈ Aā+da that yields a weakly higher
average idiosyncratic payoff than the profile α(w) + da for all w, which also belongs
to ∈ Aā+da. But then, since

∫ w
w

∂2v(a,θ,w)
∂a∂θ

∣∣∣
a=α(w)

dF (w) > 0 for all α ∈ int(Aā) we

can apply a similar argument to argue that ∂B(ā,θ)
∂ā

must be increasing in θ: we can
always find α′′ ∈ Aā+da that leads to a further increase in average idiosyncratic
payoffs over those associated with α′, i.e.,

∂2B(ā, θ)

∂ā∂θ
≥ max

α∈int(Aā)

∫ w

w

∂2v(a, θ, w)

∂a∂θ

∣∣∣
a=α(w)

dF (w) > 0.
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That is, B(ā, θ) exhibits strictly increasing differences in (0, amax)× Θ′ and, by
continuity, in [0, amax]×Θ′ so Theorem 2 applies.

Proof of Theorem 4. The proposition immediately follows by noting that (i) the first
term in the objective function of (14) does not depend on F and, (ii) we can index F
and F̂ using parameter ζ ∈ R so that the condition in the proposition is equivalent
to B exhibiting increasing differences in ā and ζ. Together, (i) and (ii) imply that u
and B satisfy the conditions in Theorem 2 w.r.t. ā and ζ (keeping θ unchanged).

Proof of Theorem 5. The proof logic is similar to the one used in Theorem 3 and is
therefore omitted.
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