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Abstract

We use a longitudinal dataset measuring beliefs and behaviors to study the
dynamics of model – or narrative – adoption during the Covid-19 pandemic. We
show that individuals switch beliefs about the effectiveness of preventive behaviors
following changes in perceived risk. The adoption of models promoting preventive
behaviors is procyclical and model switching is influenced by exposure to conflicting
information. We explain the data using a heterogeneous-agent model of competing
narratives in which agents exhibit motivated beliefs. Adopting misspecified models
increases infection rates, highlighting the importance of promoting accurate beliefs
to guide behavior in the presence of novel risks.
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1 Introduction

Novel risks are becoming increasingly common. From climate change to global pandemics,
these risks have far-reaching effects on individuals and on entire economies. A growing
theoretical literature describes how individuals adopt models of the world – or narratives –
to guide their behavior in this uncertain landscape. These narratives provide a causal link
between behaviors and outcomes in the presence of changing information and evolving
risks. By shaping individual behavior, narratives also play a critical role in the evolution
of the risks themselves.

Despite the growing theoretical literature on narrative selection, there is no empirical
evidence on how individuals actually adopt narratives in the real world. This is partly
because it is challenging to obtain longitudinal data on beliefs. In this paper, we aim to
bridge this gap by studying narrative adoption dynamics empirically. To do so, we use
the Covid-19 pandemic as a case study. We take advantage of a longitudinal survey that
collected data from a representative panel of individuals in the United States (U.S.) on
behaviors they engaged in to avoid Covid-19 infection, as well as their beliefs about the
effectiveness of these behaviors.

The Covid-19 pandemic provides a compelling case study of the challenges that in-
dividuals face when choosing which narratives to adopt under emergent risks. During
the pandemic, individuals were exposed to conflicting information as well as fluctuating
prevalence of infection. From the early stages of the pandemic, there was a debate over
the effectiveness of preventive behaviors such as wearing masks and social distancing. The
Centers for Disease Control (CDC) in the U.S. later admitted that public health guidance
was “confusing and overwhelming.”1 Further, the proliferation of conflicting perspectives
across media outlets made it difficult for people to identify and comply with effective
behaviors for curbing the spread of the virus (Bursztyn et al., 2020).

In this paper, we make three main contributions. First, we document the dynamics
of adopting narratives about the effectiveness of preventive behaviors against novel risks.
Specifically, we observe substantial narrative switching over time driven by changes in per-
ceived risk and exposure to conflicting information. Individuals switch between correct
beliefs that preventive behaviors curb infection and incorrect beliefs that preventive be-
haviors are ineffective. Such narrative switching cannot easily be explained by standard
learning and belief updating models. Therefore, our second contribution is to propose
and calibrate a heterogeneous-agent model of competing narratives based on Eliaz and
Spiegler (2020). Our model fits the data remarkably well. Third, we quantify the welfare
impact of incorrect beliefs by estimating the counterfactual drop in infection rates were
all agents to adopt the correct narrative.

1See, for example, the New York Times article https://www.nytimes.com/2022/08/17/us/politics/
cdc-rochelle-walensky-covid.html.
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For our analyses, we rely on data from the Understanding Coronavirus in America
Study (UCAS). This is a unique longitudinal survey administered throughout the pan-
demic within the Understanding America Study (UAS), a nationally-representative online
panel of adults in the U.S. The UCAS surveyed nearly 9,000 individuals every 2-4 weeks
between March 2020 and July 2021. Crucially, the survey period covered the first three
waves of the pandemic, thus providing rich, cyclical variation in infection risk over time.
The UCAS questionnaire repeatedly asked individuals about their perceived risk of Covid-
19 infection and their beliefs about the effectiveness of different preventive behaviors.

We find that a majority of individuals switch back and forth between believing that a
preventive behavior (e.g., avoiding restaurants and bars) is effective in reducing infection
risk and believing that the preventive behavior is ineffective. Belief in the effectiveness
of the behavior is procyclical – as infection risk goes up (down), the share of individuals
who believe in the effectiveness of the behavior also goes up (down). Adherence to pre-
ventive behaviors is also procyclical and is driven to a large extent by the belief in their
effectiveness.

Exposure to conflicting information partly drives narrative switching. The propensity
to switch narratives is higher for individuals who were exposed both to a conservative
news outlet such as Fox News (which promoted the notion that preventive behaviors were
ineffective) and public health officials like the CDC and the World Health Organization
(which promoted the effectiveness of preventive behaviors) than for individuals who were
exposed to only one type of news source. Narrative switching is also higher for individuals
who identify as Republicans than those who identify as Democrats.

Under standard learning and belief updating models, we would expect beliefs about
the effectiveness of preventive behaviors to converge as evidence accumulates over time.
In contrast, our data show that changes in perceived risk induce narrative switching.
To explain this empirical pattern, we propose a theoretical model in which agents have
motivated beliefs and adopt narratives based partly on their incentives. In our model,
agents choose between two competing narratives to maximize their anticipated utility.
According to the “effective” narrative, both the prevalence of the virus and the adoption
of preventive behaviors affect the probability of becoming infected. According to the
“ineffective” narrative, behaviors do not affect infection risk and, thus, should not be
adopted. In this context, an agent would adhere to a preventive behavior if the benefit
from reducing infection risk is higher than the cost of adopting the behavior. Both
infection risk and the cost of behavior adoption are heterogeneous in the model. We show
that the fraction of agents choosing the effective narrative goes up with virus prevalence
as long as the distribution of costs is sufficiently dispersed.

We calibrate our model to assess its ability to generate the belief and behavior dy-
namics observed in the data. To do so, we prove how to identify the unobserved cost
distribution from data on perceived risks. We find that the model reproduces both the
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level and cycling of narrative and behavior adoption in the data. We formally test its
goodness of fit by showing that the model-generated time series is cointegrated with the
data and explains above 60% of its variation.

We present a counterfactual welfare analysis of the impact of competing narratives on
infection rates. This analysis aims to quantify the change in infection rates if individuals
who believe preventive behaviors are ineffective had adopted the effective narrative. For
this purpose, we develop an econometric framework based on our theoretical model to
estimate the probability of adhering to the preventive behavior after the counterfactual
narrative switch. We find that the drop in infection rates would have been between 2.5%
and 4.6% (significant at the 1% level). To put this magnitude in context, a 16-month
mandate imposing full adherence to the eight behaviors we study would have led to a
drop in infection rates of 24%. Hence, the successful promotion of a unified public health
narrative would have led to a reduction in infection rates equivalent to 10-20% of the
mandate.

Our paper offers several takeaways. Our empirical analysis shows that narrative
switching is prevalent and can have significant welfare consequences. Our theoretical
model illustrates the need to incorporate motivated beliefs and exposure to conflicting
information to generate these dynamics. Methodologically, we show how to run counter-
factual analysis by identifying unobserved preference parameters using data on individual
beliefs and behaviors.

2 Related Literature

The paper is related to the small but growing literature studying how agents choose
among competing models of the world or narratives. We contribute to this literature by
providing the first empirical evidence of narrative switching and documenting the impact
of competing narratives on welfare.

Existing theoretical research on narrative selection follows two main approaches. The
first approach – which we adopt – assumes that narrative choice is influenced by the
agent’s preferences, subject to fitting some aspects of the observed data. In the ‘competing
narratives’ models of Eliaz and Spiegler (2020) and Eliaz et al. (2022), agents choose the
narrative that yields the highest anticipated utility given the data.2 The second approach
– which is less consistent with our data – assumes that agents’ choice of narrative is
driven only by some goodness of fit to the observed data (Olea et al., 2019; Galperti,
2019; Schwartzstein and Sunderam, 2021; Ba, 2022).

We contribute to the theory literature by extending the competing narratives model
of Eliaz and Spiegler (2020) to include heterogeneous agents. Under this framework,

2Relatedly, He and Libgober (2020) study the evolutionary selection of models by looking at whether
agents endowed with a given model enjoy higher payoffs over time than agents using alternative models.
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agents have motivated beliefs and select narratives that are in their best interest (Kunda,
1990; Bénabou and Tirole, 2016). In our model, agents form beliefs about the causal
link between costly behaviors and their consequences. Misspecification arises when agents
omit relevant causal relationships.3 Our model differs from much of the related theoretical
literature in two important respects that make it suitable for empirical analysis. First,
narratives focus on actions and outcomes at the individual level, rather than dealing with
policies and aggregate outcomes. Second, agents face heterogeneous costs and risks.

We contribute to the empirical literature by documenting the dynamics of narrative
selection. No work that we are aware of has presented direct evidence of narrative switch-
ing. Prior empirical work has identified variation in forecasters’ confidence in inflation
predictions over time, which could be interpreted as an indirect measure of narrative
switching (Giacomini et al., 2020). Existing empirical work has also found evidence for
motivated beliefs. For example, experiments show that individuals have motivated beliefs
(Saccardo and Serra-Garcia, 2023) and adjust their beliefs in a self-serving manner when
faced with positive versus negative feedback (Zimmermann, 2020). However, the work on
motivated beliefs has not explored the dynamics of belief cycles over time as we do.

The political economy literature has considered theories of competing narratives in
the context of political ideology and the mobilization of political opinion (Eliaz et al.,
2022). We contribute to this literature by providing evidence at the individual level of
political ideology driving narrative switching. This complements existing work showing
the influence of politics on pandemic outcomes at the aggregate level (Wallace et al., 2022;
Krieger et al., 2022).

3 Data

We conduct our empirical analysis using data from the UAS, a nationally representative
online panel of adults aged 18 and older residing in the U.S. Features of the UAS ensure
a high data quality dataset, comparable to that obtainable from more traditional survey
modes, such as in-person or phone interviews (Angrisani et al., 2019).4 The UAS is
the only nationally representative panel in the U.S. that continually assessed individuals’
experiences during the Covid-19 pandemic.

Nearly 9,000 UAS members participated in the Understanding Coronavirus in America
Study (UCAS), a longitudinal study featuring surveys every 2-4 weeks between March

3This is related to theoretical work that defines model misspecification as the omission of relevant vari-
ables (Cowell et al., 2007; Pearl, 2009; Eyster and Piccione, 2013; Spiegler, 2016; Mailath and Samuelson,
2020; Levy and Razin, 2021; Levy et al., 2022).

4These features include the following: 1) panel members are recruited exclusively through Address
Based Sampling; 2) if members do not have access to the Internet, they receive a tablet and broadband
Internet access (and related training); 3) members are regularly invited to complete two surveys per
month and receive compensation at the rate of $20 per 30 minutes of survey time. Since 2014, the
attrition rate in the UAS has been about 5% per year.
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2020 and July 2021.5 Crucially, this period covers the first three major waves of the
Covid-19 pandemic. The first round of the UCAS was fielded to the entire UAS panel
on March 10, 2020. The survey was administered every two weeks, from April 1, 2020,
to February 16, 2021. After February 16, 2021, and until July 21, 2021, the survey’s
frequency was changed to every four weeks. Accordingly, the UCAS consists of 29 rounds
of data collection.6 Out of the 9,927 UAS members invited to participate in the UCAS,
8,628 (87%) answered the survey at least once over the observation period. Among those
who answered at least once, 35% completed all 29 rounds, 55% completed at least 25
rounds, and 75% completed at least 12 rounds.

The UCAS survey contains longitudinal information about individuals’ infection sta-
tus, perceived risk of Covid-19 infection, beliefs about effectiveness of various preventive
behaviors and adoption of such behaviors, and sources of information about Covid-19.
The survey also includes rich socio-demographic information on participants. We next
describe each of these variables in detail. The survey questions eliciting the main variables
used in the empirical analysis are reported verbatim in Appendix E.

Infection Status. In each round, participants were asked to report whether they were
diagnosed with Covid-19, tested positive for Covid-19, or thought that they were infected
with Covid-19. Since Covid-19 test availability was not widespread in the first months
of the pandemic and exhibited significant differences across population segments, for our
analysis we combine this information into a self-reported infection indicator. The indicator
takes the value 1 if the participant answered yes to any of the above questions and 0
otherwise. Figure 1 compares the prevalence of Covid-19 infections based on our indicator
and the number of new Covid-19 cases per 10,000 inhabitants in UCAS participants’
counties of residence.7 As can be seen, our self-reported measure of infection status follows
the three initial pandemic waves (March-April 2020, July 2020, and November 2020-
January 2021) closely and fluctuates with official county-level data over the observation
period. Our indicator shows a higher prevalence of infection relative to the official count,
which is to be expected given that it accounts for both actual and presumed infection.

Perceived Infection Risk. Participants were asked to report their subjective proba-
bility of being infected with Covid-19 in the next three months by answering the question
“On a scale of 0 to 100 percent, what is the chance that you will get the coronavirus in

5Table A.1 in Appendix A summarizes the demographic characteristics of survey participants.
6While the first UCAS survey was in the field, UAS members were were invited to continue partici-

pating every two weeks. Those who provided consent to participate were randomly assigned a number
between one and fourteen, determining the day they were asked to answer the survey in each bi-weekly
cycle. Upon invitation, participants had two weeks to complete their survey.

7To generate Figure 1, we merged restricted residential information for each UCAS participant with
county-level caseloads in each round.
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Figure 1: Prevalence Rates: Survey Self-Reports vs. Official County-Level Data

Note: This figure shows the prevalence of Covid-19 infection over time 1) using the indicator generated
from self-reports and 2) official county-level data.

the next three months? If you’re not sure, please give your best guess." Figure 2 shows
the evolution of individuals’ risk perception throughout the pandemic. The left panel dis-
plays the overall perceived infection risk, which closely tracks the initial pandemic waves
through January 2021, but then declines sharply after the first vaccination campaign in
the spring of 2021. The right panel splits the sample by our infection status indicator
in the next round of data collection, showing that the current perceived infection risk is
systematically higher among those who reported that they were infected in the following
round.

Figure 2: Perceived Infection Risk, Overall (left) and by Future Infection Status (right)

Note: This figure shows self-reported subjective probability of being infected with Covid-19 in the next
3 months over time. The right panel splits the sample by future infection status.
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Beliefs about Effectiveness of Preventive Behaviors. In each round, the survey
elicited individuals’ beliefs about the effectiveness of different behaviors to prevent Covid-
19 infection. Specifically, participants were shown a list of behaviors in a table and asked
to answer the question “How effective are the following actions for keeping you safe from
coronavirus?” for each behavior, using a 5-point Likert scale (from Extremely Ineffective
to Extremely Effective). In our analysis, we consider the following behaviors: 1) wearing
a mask, 2) avoiding restaurants and bars, 3) avoiding public places, 4) avoiding clinics
or hospitals, 5) avoiding planes, 6) avoiding public transit, 7) avoiding high-risk people
and 8) washing hands.8 We create a binary measure of effectiveness that takes the value
of 1 if the participant indicated that the behavior was Extremely Effective or Somewhat
Effective and 0 otherwise.

Adoption of Behaviors. In each round, participants were asked to report whether
they engaged in any of the preventive behaviors listed above in the last seven days.

Sources of Information. In rounds 1, 7, and 20 through 29, participants were asked
about their sources of information about Covid-19 risks. They were presented with a list
of sources that included the following: 1) public health officials (CDC, WHO, HHS, local
public health officials), 2) television (ABC, CBS, CNN, NBC, MSNBC, Fox News, local
television), and 3) social networks (friends, family, coworkers and social media).

Individual Characteristics. An advantage of using UCAS data is the availability of
a wide range of background variables for each survey participant. In our analysis, we use
socio-demographic information (age, educational attainment, household income and gen-
der), political preferences (identifying as Republican, Democrat, or Independent/Other)
and urbanicity (living in a rural, urban or mixed area).

4 Empirical Findings

We first analyze the dynamics of beliefs about effectiveness of preventive behaviors and
adoption of preventive behaviors. To streamline the exposition, we illustrate the dynamics
using the behavior “avoid restaurants and bars,” given that it was one of the key public
health recommendations during the pandemic. The dynamics for other behaviors follow
a similar pattern and are shown in Appendix B.

We find that a significant share of respondents switch between believing that the
preventive behavior is effective and that the behavior is ineffective. Switching is driven

8Participants were also asked about the effectiveness of praying or seeing a doctor if infected/exposed.
We do not include them in our analysis because (i) praying is not considered a protective behavior from
a publich health perspective, and (ii) there is some redundancy between avoiding hospitals/clinics and
seeing a doctor.
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by the pandemic waves. As infection risk goes up, people tend to switch towards believing
that the behavior is effective. As infection risk goes down, people tend to switch towards
believing that the behavior is ineffective. Since the belief in the behavior’s effectiveness
is associated with a higher likelihood of adopting the behavior, this amplifies the pro-
cyclicality of adoption rates.

4.1 Belief Dynamics

Figure 3 presents the fraction of respondents who believe that avoiding restaurants and
bars is effective by date. As can be seen, this fraction fluctuates with perceived risk (which
closely matches fluctuations in county prevalence rates as reported in Figure 1). Sixty-five
percent of respondents switch beliefs at least once, with an average of 3.6 switches per
individual over the observation period. In Appendix B, we show that respondents are
statistically significantly more likely to switch toward believing the behavior is effective
following an increase in perceived risk.9 We also find that the trend changes characterizing
these belief cycles are statistically significant by regressing the fraction of agents believing
in the effectiveness of each behavior on a linear time trend for each of the phases of the
pandemic waves (see Table B.2 in Appendix B).

Figure 3: Share of Individuals who Think Avoiding Restaurants is Effective (left axis)
and Perceived Infection Risk (right axis)

Note: This figure graphs proportion who think avoiding restaurants is effective against perceived
infection risk over time.

9We run fixed effect regressions of the change in perceived infection risk on belief switches. Regression
results and statistics on the number of switches by behavior are reported in Table B.3 in Appendix B.
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We interpret these results as evidence that people choose between different models
– or narratives – linking actions to consequences. To provide evidence for this interpre-
tation, we show that individuals who were exposed to multiple information sources pro-
moting competing narratives were more likely to switch beliefs than individuals exposed
to information sources that promoted the same narrative, after controlling for changes
in perceived risk and sociodemographic characteristics. We use data on the use of infor-
mation sources from our survey and group sources into three categories: public health
officials, mainstream television and Fox News. Of these sources, the first two promoted
the effective narrative versus Fox News, which also promoted the ineffective narrative.10

In Table 1, we regress indicators of whether a respondent believes “avoid restaurants”
is effective (Column 1) and whether the respondent switched beliefs in the next survey
round (Column 2) on binary variables indicating which information source the individual
was exposed to in the current round (using rounds 1, 7, and 20-29 in which information
sources were available). As can be seen in Column 1, exposure to public health officials
and mainstream television is associated with a statistically significantly higher likelihood
of believing that the preventive behavior is effective whereas exposure to Fox News is
associated with a statistically significantly lower likelihood of believing that the preventive
behavior is effective.

To test for our hypothesis that exposure to competing narratives increases the likeli-
hood of switching beliefs, we include interaction terms for Fox News with public health
officials and Fox News with mainstream television. The regression output is displayed as
odds ratios, with Column 2 showing that individuals who were exposed to Fox News and
public health officials or Fox News and mainstream television were significantly more likely
to switch beliefs than those not simultaneously exposed to both sources. To account for
other sources of variation in exposure to information, we also include controls for whether
the respondent lives in an urban or rural area, but this does not have significant effects
on beliefs.

The regression also shows that Republicans were less likely to believe the behavior
was effective and more likely to switch beliefs than Democrats. This is consistent with
the fact that some prominent figures of the Republican Party promoted the ineffective
narrative some of the time.11 On the other hand, prominent figures of the Democratic

10Examples of promotion of ineffective narratives by Fox News hosts include Tucker Carl-
son’s statement on October 23, 2020 that “almost everyone — 85% — who got the coro-
navirus in July was wearing a mask, and they were infected anyway. So clearly (wear-
ing a mask) doesn’t work the way they tell us it works” (https://www.politifact.com/factchecks/
2020/oct/15/tucker-carlson/tucker-carlson-distorts-new-cdc-report-makes-false/), and Laura Ingra-
ham’s statement on December 8, 2020 that “You know what the biggest lie is, is that restau-
rants are spreaders of Covid.” (https://www.politifact.com/factchecks/2020/dec/10/laura-ingraham/
ingraham-wrongly-claims-no-science-suggests-restau/).

11For example, in an interview from July of 2020, Republican President Donald Trump stated, “And I
don’t agree with the statement that if everybody would wear a mask, everything disappears.” NBC news
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Table 1: Logit regressions on the belief that avoiding restaurants is effective and on the
propensity to switch beliefs in the next period.

Pr(effective)a Pr(switch)b

Information Sources
Public Health Officials 1.583∗∗∗ 0.836∗∗∗

Mainstream TV 1.734∗∗∗ 0.747∗∗∗

Fox News 0.877∗∗∗ 1.030
Fox News and Public Health Officials 0.800∗∗∗ 1.307∗∗∗

Fox News and Mainstream TV 0.938 1.183∗∗∗

Friends, Coworkers and Social Media 0.980 1.049∗

Party
Republican 0.350∗∗∗ 1.623∗∗∗

Independent/Other 0.503∗∗∗ 1.333∗∗∗

Urban Category
Mixed 1.021 1.030
Urban 0.972 1.044

Age
30-39 0.945 0.995
40-49 1.013 0.907∗∗

50-59 1.026 0.850∗∗∗

60+ 1.377∗∗∗ 0.796∗∗∗

Education
Some college 0.954∗ 0.997
Bachelor 1.298∗∗∗ 0.730∗∗∗

Graduate Studies 1.419∗∗∗ 0.642∗∗∗

Income
30,000-59,999 1.085∗∗∗ 0.867∗∗∗

60,000-99,999 1.132∗∗∗ 0.810∗∗∗

100,000+ 0.946∗ 0.882∗∗∗

Female 1.109∗∗∗ 0.989
Perceived Risk 1.011∗∗∗ 0.995∗∗∗

Change in Perceived Risk 1.003∗∗∗

Observations 69,997 63,572
Note: Default categories are Democrat, rural, 18-29 years old, high school or less, income<$30,000,
male. p-values computed using robust standard errors; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
aOdds ratios from logit regression of belief that behavior is effective.
bOdds ratios from logit regression of changes in belief from previous wave.

reported that Trump’s messaging on mask wearing was “muddied.” (https://www.nbcnews.com/politics/
donald-trump/trump-says-i-don-t-agree-cdc-director-s-mask-n1234253.)
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party were consistent in promoting the effective narrative.
In terms of socio-demographics, greater age, higher income, and higher educational

attainment are all associated with a reduction in the propensity to switch beliefs.
In Table C.4 in Appendix C, we conduct similar regressions for the other preventive

behaviors that we considered, including mask wearing, avoiding other public spaces and
washing hands. There we find similar results.

4.2 Behavior Dynamics

We also observe significant fluctuations in adoption of preventive behaviors. Figure 4
presents the fraction of respondents who avoid restaurants and bars over time. It shows
that the fraction fluctuates with the state of the pandemic, closely matching the three
initial pandemic waves.

Figure 4: Share of Participants who Avoid Restaurants (left axis) and Average Perceived
Risk (right axis)

Note: This figure shows the proportions of survey respondents who avoid restaurants and the perceived
risk of contracting Covid-19 in the next 3 months over time.

Table 2 displays the adoption of each preventive behavior separately by whether re-
spondents believe the behavior is effective or ineffective. Not surprisingly, beliefs about
the effectiveness of a preventive behavior are strongly associated with the take-up of the
behavior. For example, among respondents who believe avoiding restaurants is effective,
80.6% report that they avoided restaurants. Among respondents who believe avoiding
restaurants is ineffective, only 26.2% report that they avoided restaurants. Fixed effect
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logit regressions of the likelihood of adopting the behavior on the belief about its effec-
tiveness all show positive and statistically significant coefficients.

Table 2: Prevalence of Behavior by Narrative

Behavior Effective Ineffective All FE Logita

(%) (%) (%) (odds ratio)
wear mask 90.1 60.0 85.6 4.93∗∗∗

avoid. . .

restaurants 80.6 26.2 66.3 6.09∗∗∗

public places 78.7 34.6 74.5 3.08∗∗∗

clinics/hospitals 92.1 90.5 91.8 1.33∗∗∗

plane 98.2 96.7 98.0 1.30∗∗∗

public transit 96.9 95.5 96.7 1.22∗∗∗

high-risk people 84.8 46.4 81.6 2.97∗∗∗

wash hands 94.5 67.2 93.0 3.00∗∗∗

Note: Data from rounds 1-29 except for avoid hospitals (2-29) avoid planes
and public transit (8-29).
aConditional logit regressions of each behavior on the belief in its effectiveness;
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Furthermore, we identify which behaviors led to reductions in infection rates over
the subsequent three months. Table 3 presents the fraction of respondents reporting an
infection over the next three months by whether they adopted the behavior or not in
the last seven days. The last column shows the odds ratio estimates of a logit regression
of reported infection status in the next three months on all behaviors.12 Most (7 out
of 8) behaviors are associated with a reduction in infection risk and half (4 out of 8)
are associated with a statistically significant reduction in infection risk. As expected,
avoiding restaurants, public places, clinics and hospitals, and avoiding public transit are
all statistically significantly associated with reducing infection risk. While wearing a
mask, avoiding planes, and avoiding high-risk people are also negatively associated with
infection risk, their estimated coefficients are not statistically significant. It is possible
that mask-wearing is not significantly associated with reduced infection risk because once
individuals avoid most public places, wearing a mask becomes less important. Further,
since few people took planes or interacted with high-risk people during this period, we
may not expect large differences in infection risks by adoption of these behaviors.

12The regression uses data starting from round 8, which is the first wave in which questions about
effectiveness of avoiding planes and public transit were introduced. We do not use fixed effects because
very few individuals report infections in any given round, limiting our ability to obtain precise estimates.
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Table 3: Infection Rates by Behavior

Infection Rate (%) Logita

Behavior did not adopt behavior adopted behavior (odds ratio)
wear mask 6.1 5.3 0.95
avoid. . .

restaurants 6.3 4.9 0.86∗∗

public places 6.5 4.9 0.79∗∗∗

clinics/hospitals 7.0 5.2 0.72∗∗∗

plane 7.7 5.5 0.85
public transit 8.2 5.4 0.76∗∗

high-risk people 6.4 5.1 0.95
wash hands 5.9 5.3 1.21∗

Note: Data from rounds 8-29 (N = 88, 216). p-values computed using clustered standard errors
at the individual level; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
aRegression of infection status in the next three months on the set of eight behavior dummies.

5 Theory

In this section, we present a theoretical model of narrative adoption and show theoretically
and quantitatively that the model can reproduce the observed narrative and behavior
cycles during the pandemic. All proofs are relegated to Appendix D.

There is a continuum of agents indexed by i ∈ [0, 1]. Agents are exposed to a binary
risk I ∈ {0, 1} and can take a costly action a ∈ {0, 1} to lower the probability that the
risk is realized (I = 0). Risk exposure is heterogeneous in the population. Specifically,
each agent belongs to a risk category n ∈ {1, · · · , N} determining her risk distribution
pn(I|a, θ) conditional on her action a and the state of the world θ ∈ [0, 1]. The state of the
world represents aggregate factors affecting individual risks such as infection prevalence
during the pandemic. We assume that pn(0|a, θ) is increasing and differentiable in θ for
all n and a, i.e., higher θ is associated with higher risks. Taking action 1 lowers the risk
for all agents in all possible states of the world, i.e., pn(0|1, θ) < pn(0|0, θ) for all n, θ. Let
gn(θ) = pn(0|0, θ) − pn(0|1, θ) denote the gains in risk reduction from taking the action.
We assume that gn(·) is uniformly bounded away from zero and strictly increasing for all
n. This is a natural assumption in the context of the pandemic, since the benefit from
taking the preventive action is larger at higher prevalence rates.

The cost of taking action a = 1 for agent i is given by ci, which is distributed according
to F in the population. F is continuous with density f and has full support on (0, c̄),
with c̄ > maxθ,n gn(θ).13 An agent’s type is thus given by her risk category ni and her cost

13This implies that there is a mass of agents with costs higher than the expected reduction in risk.
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ci. We assume that ci and ni are independent. Each agent observes the realization of the
state of the world θ before choosing a. The payoff of agent i is given by ui(I, a) = I − cia.

Agents need to model the impact of a on their risk probability in order to inform
their choices. They are exposed to alternative narratives about the relationship between
variables θ, a and I in the population. We follow Spiegler (2016) and define a narrative
as a subjective directed acyclic graph (DAG), where each edge represents a causal link
between two variables. Specifically, agents can choose between the effective narrative (E),
which states that both θ and a cause I, and the ineffective narrative (N ) which assumes
that only θ causes I. The associated DAGs are:

Effective (E) Ineffective (N )

θ a I θ a I

The edge from θ to a means that agents condition their action on the observed state of the
world. The DAGs represent conditional independence restrictions among the variables:
while narrative E allows for I to be correlated with a conditional on θ, narrative N
asserts that I and a are conditionally independent (but not unconditionally so due to
their mutual dependence on θ). The choice of narrative is driven by motivated beliefs as
in the model of Eliaz and Spiegler (2020): each agent adopts the narrative that yields the
highest anticipated utility, i.e., she maximizes her subjective expected payoff given the
optimal action under each narrative.

We impose the restriction that agents’ perceived risks must be derived from the true
risk distributions {pn}N

n=1. The interpretation is that, while agents choose which variables
to pay attention to by adopting different narratives, they use population frequencies to
form their beliefs. For instance, an agent of risk type n adopting narrative N believes
that the probability of being infected is pn(0|θ) for all a, whereas the perceived risk under
E is pn(0|a, θ), with both probabilities coming from the true risk distribution.

We assume that there is a fraction γ ∈ (0, 1) of rational agents, who always adopt the
effective narrative, while the remaining agents can choose a narrative from {E , N }. Being
rational does not depend on risk category or cost.

The timing is as follows. First, the state of the world θ is realized. After learning
θ, each agent adopts a narrative and chooses an action to maximize her expected utility.
Finally, I is realized according to pni

(I = 0|a, θ).
There exist two additional narratives, depicted below, which are both missing the

edge from θ to I. We assume that agents do not consider these narratives for two reasons.
First, they imply that agents’ perceived risks are independent of the state of the world,
which is at odds with the data. Second, they may lead to equilibrium non-existence for
some parameter values.
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Action determines risk Independent risk

θ a I θ a I

5.1 Agent’s Problem

We solve the agent’s problem backwards. We first pin down the optimal action ar
i under

each narrative r ∈ {E , N } and then we characterize the choice of narrative. Let pr
i denote

the perceived risk distribution of agent i under each narrative.
The optimal action ar

i given narrative r solves

max
a∈{0,1}

pr
i (1|a, θ) − cia. (1)

If agent i adopts narrative E she chooses a = 1 if pni
(1|1, θ) − ci ≥ pni

(1|0, θ). That
is, since pni

(1|1, θ) − pni
(1|0, θ) = gni

(θ), her optimal choice is given by whether gains in
risk reduction are greater than the costs of taking the action:

aE
i (θ) =

1 gni
(θ) ≥ ci

0 otherwise.
(2)

Accordingly, her anticipated utility is

V E
i (θ) =

pni
(1|1, θ) − ci gni

(θ) ≥ ci

pni
(1|0, θ) otherwise.

(3)

If instead the agent adopts N then she believes that pN
i (0|1, θ) = pN

i (0|0, θ) = pni
(0|θ)

and chooses aN
i = 0 to avoid cost ci. Her anticipated utility is thus given by

V N
i (θ) = pni

(1|θ). (4)

The agent chooses narrative E if V E
i (θ) ≥ V N

i (θ). Such a choice involves comparing
pni

(1|a, θ) to the unconditional probability pni
(1|θ). Let αni

:= Prni
(a = 1|θ) denote the

fraction of agents of risk category ni choosing a = 1. Then pni
(1|θ) satisfies

pni
(1|θ) = pni

(1|1, θ)αni
+ pni

(1|0, θ)(1 − αni
).

First note that an agent maximizing anticipated utility would never choose narrative E
and action 0 whenever αni

> 0, since pni
(1|θ) > pni

(1|0, θ). Accordingly the agent chooses
ri = E and aE

i = 1 if
pni

(1|1, θ) − ci ≥ pni
(1|θ). (5)

16



Otherwise, she chooses ri = N and aN
i = 0. Rearranging this condition, we obtain

ci ≤ pni
(1|1, θ) − pni

(1|θ) = (pni
(1|1, θ) − pni

(1|0, θ))(1 − αni
),

yielding the following cutoff rule for optimal narrative adoption:

ri =

E ci ≤ gni
(θ)(1 − αni

)

N otherwise.
(6)

5.2 Equilibrium

In equilibrium, the fraction of agents taking a = 1 in risk category n, denoted by α∗
n,

must be consistent with agents optimally choosing the narrative that maximizes their
anticipated utility given α∗

n. The share of agents choosing a = 1 consists of both rational
agents with aE

i = 1 and agents with motivated beliefs opting for narrative E . The former
are those with ci < gn(θ) while the latter satisfy ci ≤ gn(θ)(1 − αn). Accordingly, α∗

n is
given by

α∗
n = γF (gn(θ)) + (1 − γ)F (gn(θ)(1 − α∗

n)). (7)

Let σ∗
n ∈ [0, 1] be the share of agents with motivated beliefs who adopt narrative E in

equilibrium, which is equal to F (gn(θ)(1 − α∗
n)). The next result establishes the existence

of a unique equilibrium, up to a measure zero set of agents who are indifferent between
narratives and therefore also indifferent between actions.

Proposition 1. An essentially unique equilibrium exists and exhibits a mix of narratives
in each risk category, i.e., 0 < σ∗

n < 1 for all n = 1, · · · , N.

The intuition behind the presence of both narratives in equilibrium is straightforward.
As more agents adopt E and choose a = 1, the unconditional probability pn(1|θ) gets closer
to the conditional probability pn(1|1, θ). In this context, agents have a strong incentive to
switch to N since their perceived risk is similar across narratives and they can avoid the
costs of taking the action. The opposite forces are at play as more agents adopt N : the
gap between pn(1|1, θ) and pn(1|θ) widens, providing incentives for agents with low cost
ci to switch to E and take action a = 1.

5.3 Comparative Statics

We next identify the conditions under which the fraction of agents adopting the effective
narrative is increasing in the state of the world θ. Define the elasticity of the decumulative
cost distribution 1−F by eF (x) := xf(x)

1−F (x) . It measures the relative increase in the fraction
of agents with costs lower than x following a given relative increase in x. Abusing notation,
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let αn(θ) and σn(θ) respectively denote the equilibrium values of α∗
n and σ∗

n when the state
of the world is θ.

Proposition 2. The function αn(·) is strictly increasing for all n. Moreover, there exists
K(θ) >

1
γ

such that σn(·) is strictly increasing at θ if and only if eF (gn(θ)) < K(θ).

The intuition behind this result is as follows. A higher θ leads to higher gains g(θ),
making the difference V E

i − V N
i go up for all i. In addition, more rational agents have

gains greater than costs. Accordingly, a higher θ leads to a higher adoption rate αn.

However, while such an increase does not affect the beliefs under narrative E , it reduces
the difference between pn(1|1, θ) and pn(1|θ), making narrative N more attractive relative
to E . Therefore, whether V E

i − V N
i goes up or down depends on whether the larger gains

from taking the action are not completely offset by the smaller difference in perceived
risk. For this to be the case, the adoption rate must grow slowly so that the gap between
pn(1|1, θ) and pn(1|θ) does not shrink too fast, which happens when F (gn(θ)) does not
increase quickly. That is, as long as the elasticity of the cost distribution is not too high.
The next corollary provides a sufficient condition for this to be the case.

Corollary 1. If eF (x) ≤ 1
γ

for all x ∈ [minn gn(0), maxn gn(1)] then σn(·) is strictly
increasing for all θ ∈ [0, 1] and all n = 1, · · · , N.

6 Quantitative Analysis

We calibrate the model to study its quantitative implications. We are interested in the
model’s ability to generate cycles in equilibrium action frequency α∗

n and narrative preva-
lence σ∗

n similar to those in the data. For illustrative purposes, we focus on “avoiding
restaurants and bars” as the preventive action and assume that there is a single risk
category.

Our approach is as follows. We first calibrate the parameters of the model, namely,
the fraction of rational agents γ and the cost distribution F. We separately estimate the
gains g(θ) from taking the preventive action in each period and obtain the times series of
gains {gt}. We then input the time series into equilibrium equation (7) of the calibrated
model to obtain the series of equilibrium adoption rates {α∗

nt} and narrative prevalence
{σ∗

nt}. We use survey weights to estimate both the model parameters and the gains to
ensure that our results are representative of the U.S. adult population.

We estimate the fraction of agents who are rational by calculating the share of agents
in the data who always think that taking the action is effective (i.e., rit = E for all t).

We do not directly observe costs in our data. However, we are able to estimate the
cost distribution from individual data on risk perceptions by making use of the following
key result:

18



Lemma 1. For any rational agent i there exist p
i

≤ pi such that the following conditions
are equivalent:

(i) gni
(θ) > ci

(ii) pni
(0|1, θ) > p

i

(iii) pni
(0|0, θ) > pi.

Moreover, if ci ∈ [g(0), g(1)] then ci = pi − p
i

with pi, p
i

given by

p
i

= min
θ

{pni
(0|1, θ) : aE

i (θ) = 1}, pi = max
θ

{pni
(0|0, θ) : aE

i (θ) = 0}. (8)

The first part of the lemma directly follows from the assumption that gn(θ) and
pn(0|a, θ) are strictly increasing in θ for a = 0, 1. The second part is due to the continuity
of gn.

Lemma 1 states that, as long as most costs fall into [gni
(0), gni

(1)], F can be ap-
proximated by the distribution of pi − p

i
. Thus, if we are able to identify pi − p

i
from

subjects’ perceived risks we could estimate F. Since p
i

represents the lowest perceived
risk of rational agent i when it takes the preventive action we can approximate it using
mint{pit : ait = 1, rit′ = E for all t′}. Similarly, maxt{pit : ait = 0, rit′ = E for all t′} is
the empirical counterpart of pi. Accordingly, we can estimate F it using the sample of
individual belief differences given by

(
maxt{pit : ait = 0, rit′ = E for all t′} − mint{pit :

ait = 1, rit′ = E for all t′}
)I

i=1
, where I is the number of individuals in the dataset. To do

so, we assume that F belongs to the Gamma family and estimate its shape (α) and rate
(β) parameters.

We derive the gains from taking the action by estimating for each t the difference in
future infection prevalence between those choosing ait = 0 and those choosing ait = 1. We
define future infection using the same three-month window as the window for perceived
risk pit.

14

Table 4 presents the model parameter values and summary statistics for gains, while
Figure 5 shows our estimated cost distribution and gains over time.

14To avoid poorly measured infection rates due to significant shortage of testing at the beginning of
the pandemic, we excluded initial survey rounds for which the number of tests performed did not reach
100 per 100,000 people. According to data from the Covid Tracking Project (https://covidtracking.com),
such figure was reached in mid May 2020, coinciding with round 5, so we omitted rounds 1 to 4 from
our analysis. Since the survey frequency was changed to every 4 weeks after wave 24, we estimate risk
gains for each month by pooling the data for waves 5-6, 7-8,· · · , 23-24. To convert 3-month estimates
of differences in infection prevalence into gains gn(θ) we assume that agents perceive gains as they are
realized over time. Specifically, we define gains at the beginning of month t as differences in infection
prevalence in months {t − 2, t − 1, t}. This assumption reflects a compromise between agents’ need to
observe enough data to estimate gains given low prevalence rates while avoiding outdated beliefs since
the data arrives continuously. This gives us 12 monthly data points, from August 2020 to July 2021.
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Table 4: Model Parameters

Parameter Value
Fraction Rational (γ) 35%
Cost Distribution (F ) Gamma[0.155, 1.511]
Gains (gn(θ))

Mean 1.69%
Std. Deviation 0.21%

Note: F =Gamma[α, β] with α =shape parameter and β = rate parameter. Gains = p.p. difference in
Covid prevalence over next 3-months between those who did not avoid restaurants and those who did.

Figure 5: Cost distribution (left) and gains from avoiding restaurants (right)

Note: This figure shows a histogram of the estimated cost distribution (left) and the estimated gains
over time (right) for the action ‘avoiding restaurants.’

Figure 6 compares the action frequency and narrative prevalence generated by the
model with those in the data, both in absolute levels and in deviations from the mean. The
model falls short of matching action frequency levels and the prevalence of the effective
narrative. This is due to the fact that average perceived risks are much higher than
infection rates, leading to a mismatch between costs and estimated gains. This mismatch
could be due to a variety of factors, including survey participants overestimating risks and
underestimating infection rates due to the high prevalence of asymptomatic Covid cases.
One way to account for this mismatch is to normalize gains using the ratio of average
perceived risk to average gains, where each average is taken both across individuals and
across survey rounds. The top panel of Figure 6 presents the action and narrative levels
generated by the original and the normalized models. The latter closely matches the
average levels in the data. More importantly, as shown in the bottom panel of the figure,
the model reproduces quite well the cycles associated with pandemic waves as well as the
downward trend in both action and narrative prevalence.

Overall, the model does a very good job reproducing both behavior and belief cy-
cles, despite calibrating each of its components independently rather than trying to fit
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Figure 6: Comparison of action frequency and narrative prevalence between the model
and the data.

the model to the data. To formally assess the model’s goodness-of-fit, we perform the
Engle–Granger cointegration test using the time series generated by the model on action
prevalence. If the two series are cointegrated, then the model fully captures the dynamics
of the data, i.e., the data is a linear combination of the model plus stationary noise. In
addition, a high R-squared and a coefficient close to one in the OLS regression of the
data on the model-generated series would mean that the model mimics the variation in
the data to a high degree. Table 5 presents the results from the test. It includes as a
comparison the “all rational” benchmark in which all agents are assumed to believe in the
effectiveness of the preventive behavior (γ = 1).

The results of the Engle-Grainger test are encouraging. First, as a pre-requisite for
the test, both the data and the model-generated series exhibit unit roots. Second, we
fail to reject that the residuals from the OLS regression datat = α + βmodelt + ut are
autocorrelated both using the Ljung-box test and selecting the best-fitting ARIMA model
according to the Akaike information criterion (an MA(0) process). Finally, the estimated
β is close to one (0.816) and the R-squared is quite high (0.616). As a comparison, the
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Table 5: Cointegration test for time series of action frequency

Step Model (γ = 0.35) All Rational (γ = 1)
1. Unit Root Test of Seriesa

Data 0.57
Model 0.56 0.55

2. OLS Regression
Coefficient 0.820 0.716
p-value 0.002 0.002
R2 0.622 0.617

3. White Noise Test of Residuals
ARIMA Processb MA(0) MA(0)
Ljung-Box Test p-values

t − 1 0.190 0.186
t − 2 0.339 0.335
t − 3 0.072 0.073

aDickey-Fuller test p-value. A high p-value fails to reject the presence of a unit root
bBest fitting ARIMA process according to the Akaike Information Criterion

all-rational benchmark, apart from being unable to generate narrative cycles, exhibits a
lower OLS coefficient (0.711) suggesting a poorer fit to the behavior prevalence data.

7 Counterfactual Analysis

In this section, we evaluate the impact of adopting the ineffective narrative on welfare. To
do so, we develop an econometric framework based on our theoretical model to estimate
individual behavior in the counterfactual scenario in which all agents are endowed with
the effective narrative.

Our approach consists of two steps. First, for each preventive behavior a and for
each agent i who reports adopting narrative rit = N and choosing ait = 0 in period t,
we compute the probability that she would take action a = 1 under narrative E . Second,
we use these probability estimates to compute the counterfactual change in aggregate
infection rates.15

We face two main challenges, one in each step. In the first step, we observe neither
agents’ perceived risk under narrative E , since agents only report perceived risk given
their chosen narrative and behavior, nor the cost of taking the preventive action. We
overcome this lack of observability by using Lemma 1 to derive a counterfactual choice

15As in the prior section, we use survey weights to ensure that our estimates apply to the US population.
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rule that only relies on reported infection risk. In the second step, since our data includes
many preventive behaviors, we cannot tractably account for all the possible combinations
of behavior changes contributing to the overall change in infection rates.16 We tackle this
issue by estimating the average marginal effect on risk associated with each behavior and
summing these effects across behaviors.

7.1 Choice Rule

We derive the counterfactual choice rule for agents with (rit, ait) = (N , 0) and use it to
identify and estimate the probability of choosing action a = 1. Recall that, according to
(2), agent i would choose a = 1 under narrative E if gni

(θ) > ci.

As Lemma 1 states, we can express choice rule (2) in terms of cutoffs on condi-
tional risk probabilities instead of (unobserved) individual costs. Specifically, we can
use expression (8) to identify and estimate cutoffs p

i
, pi and then apply rules (ii) and

(iii) to pin down agent i’s counterfactual action âit.
17 To do so, we need to deal with

the fact that, since the agent’s narrative in period t is N , her reported infection risk
pit corresponds to pit = pni

(0|θt) instead of pni
(0|ait, θt). Nonetheless, we know that

pit ∈ (pni
(0|1, θt), pni

(0|0, θt))) since the unconditional risk probability is a weighted av-
erage of the probabilities conditional on actions. Hence, if pit < p

i
then pnit

(0|1, θ) < p
i

and thus âit = 0. Similarly, if pit > pi then âit = 1. Finally, we are unable to determine
âit if pit ∈ (p

i
, pi). Figure 7 illustrates the three possible scenarios depending on the value

of pit.

Figure 7: Counterfactual Action as a Function of Reported Infection Risk

pit

p
i pi

âit = 0 âit = ? âit = 1

Turning to the estimation of cutoffs, let H(·|Zi) be the probability distribution of p
i

in the population, where Zi is a vector of sociodemographic characteristics representing
different risk categories. Since p

i
= minθ{pni

(0|1, θ) : aE
i (θ) = 1} by (8), we can estimate

H using the cross-section of observations
(

mint{pit : ait = 1, rit = E}, Zi

)I

i=1
. We assume

a flexible functional form for H, given by the zero-one inflated Beta distribution, which
generalizes the Beta distribution to allow for the possibility that p

i
∈ {0, 1}. Similarly,

16The data we analyze includes 8 behaviors. Analyzing all of these would yield 256 different combina-
tions.

17Note that agents who switch narratives use cutoff rule ci < g(θ)(1 − α(θ)) instead of the cutoff
rule ci < g(θ) used by rational agents. Hence, ci no longer coincides with pi − p

i
. However, as long

as g(θ)(1 − α(θ)) is increasing, we can still find cutoffs p
i
, pi using (8) such that ci < g(θ)(1 − α(θ)) is

equivalent to pni
(0|1, θ) > p

i
and pni

(0|0, θ) > pi.
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we estimate the cdf of pi, denoted by H, by running a zero-one inflated Beta regression
using data

(
maxt{pit : ait = 0, rit = E}, Zi

)I

i=1
.

Equipped with the estimated distributions, we assign probabilities to each of the
scenarios depicted in Figure 7 for each individual. By doing so, we can derive bounds on
the probability that âit = 1 for each of the preventive behaviors included in the survey.
Specifically, the probability that âit = 1 must be at least as high as H(pit|Zi) since p

i
< pit

implies that âit = 1. Likewise, it can be no larger than the probability that p
i

< pit, i.e.,
H(pit|Zi).

7.2 Change in Infection Rates

Our next step is to use the estimated probability of taking each preventive behavior j =
1, · · · , m to derive the expected difference in infection rates between the counterfactual
and the actual data. To do so we need to estimate the probability of becoming infected for
any given vector of actions a = (a1, · · · , am). Our analysis covers eight behaviors, making
the estimation of infection risk conditional on every possible realization of a intractable.18

Instead, we regress infection rates on the vector of actions a for each t = 1, · · · , T and
compute the average marginal effect of each action aj.19 Under this approach, the overall
change in infection risk for any agent i with counterfactual action probability Pr(âj

it = 1)
is given by

∆Pr(Iit = 0) =
∑

j

Pr(âj
it = 1)[pni

(0|aj = 1, ā−jt, θt) − pni
(0|aj = 0, ā−jt, θt)], (9)

where ā−jt is the vector of average frequencies of all behaviors but j in period t.

Table 6 presents the estimated percent reduction in infection rate implied by individual
behaviors in the counterfactual scenario in which all agents are endowed with the effective
narrative. We compute bootstrap standard errors clustered at the individual level, where
at each iteration we implement the econometric procedure described above. We provide
estimates using both the lower and the upper bounds on the probability of taking a = 1.

As Table 6 illustrates, infection rates would have been between 2.5% and 4.6% lower if
all agents in the population had adopted the effective narrative. The estimated reduction
is statistically significant and quite large, considering that we do not account at all for
any spillover or dynamic effects. Assuming a proportionate reduction in mortality, the
adoption of the effective narrative would have prevented roughly between 15,000 and

18We include the following behaviors: avoid restaurants, wear a mask, avoid high-risk individuals, avoid
public places and gatherings, avoid clinics and hospitals, avoid travel by plane, avoid public transit and
wash your hands. We do not have data for the initial seven waves for travel related behaviors so our
estimate do not fully reflect the effect of a higher adherence to those behaviors.

19We omit the first 4 waves of data due to the limited availability of covid tests prior to May of 2020.
See footnote 14.
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Table 6: Counterfactual Change in Infection Rates and Behavior

Lower bound Upper bound Mandate
Behaviors (p-value) (p-value) (p-value)
All 2.47% 4.59% 24.11%

(< 0.001) (< 0.001) (< 0.001)
p-values based on bootstrap standard errors clustered at the individual level (200 replications).

28,000 deaths from a total of about 605,000 deaths by July 2021 in the U.S.
To put these estimates into context, in the last column of Table 6 we present the

hypothetical impact of a mandate that imposes all eight behaviors in the population
throughout the whole survey timeline. Under such a mandate, the overall infection rate
would have been about 24% lower. Accordingly, eliminating the adoption of the ineffective
narrative while keeping the adoption of preventive behaviors voluntary would have led to
a reduction in infection rates 10 to 20% as large as the reduction due to a 16-month-long
mandate.

8 Conclusions

The 2017 American Economic Association Presidential Address by Robert Shiller included
a call to expand the field of economics to “include serious quantitative study of changing
popular narratives.” In this paper, we respond to this call by conducting the first evalua-
tion of narrative adoption using empirical data. To do so, we use the Covid-19 pandemic
as a case study for evaluating the adoption of models or narratives about the effectiveness
of risk mitigating measures such as avoiding restaurants or wearing a facemask.

In our analysis, we use longitudinal data from a nationally representative survey
covering the most intense and critical waves of the Covid-19 pandemic, from March 2020
to July 2021. We document substantial narrative switching driven by changes to perceived
risk and exposure to conflicting narratives. These belief cycles pose a challenge to standard
notions of belief updating. Therefore, we propose and calibrate a model of narrative
adoption driven by motivated reasoning and show that it fits the data remarkably well.

Our welfare analysis highlights the importance of promoting accurate beliefs. We
find that the prevalence of the ineffective narrative had substantial negative impacts
on public health, leading to roughly 15,000-28,000 excessive deaths from a total of about
605,000 deaths by July 2021 in the U.S. Such non-trivial reductions point to the important
consequences of failures in communication in times of crisis. Some years into the pandemic,
public health authorities admitted that public communication failed to build consensus
about the effectiveness of preventive behaviors. As the former National Institutes of
Health Director Francis Collins later stated, “the big thing that I didn’t do, and I don’t
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think a lot of the communicators did, was to say this is an evolving crisis, this is going to
change every time we made a recommendation, whether it was about social distancing or
mask wearing or receiving vaccines.”20

20As reported in STAT News, see https://www.statnews.com/2022/09/19/francis-collins-trust-science-
covid-communication-failures/.
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Appendix

A Sample Characteristics

Table A.1: Demographic Characteristics: UCAS Participants and Non-Participants

In UCAS Not In UCAS H0: In=Not In (p-val)
Male 41.0 40.8 0.906
White 64.3 52.2 0.000
Black 8.8 8.1 0.436

Other Race 10.5 12.2 0.086
Hispanic 17.0 26.8 0.000

Age 18-29 12.9 19.6 0.000
Age 30-39 19.6 22.7 0.013
Age 40-49 18.0 19.4 0.286
Age 50-59 19.1 15.1 0.001
Age 60+ 30.3 23.2 0.000

High School or Less 22.2 23.7 0.253
Some College 37.0 37.0 0.995

Bachelor 24.2 23.2 0.468
Graduate Studies 16.6 16.0 0.648

Married 54.0 48.1 0.000
Separated/Divorced/Widowed 20.5 19.5 0.441

Never Married 25.5 32.4 0.000
Working 60.3 64.4 0.009

HH Income<$30,000 24.8 28.3 0.011
$30,000 ≤HH Income<$60,000 25.4 24.1 0.368
$60,000 ≤HH Income<$100,000 23.9 21.4 0.060

HH Income≥$100,000 25.9 26.1 0.855
Rural 16.8 10.5 0.000
Mixed 45.1 39.4 0.000
Urban 38.1 50.0 0.855

Democrat 46.5 53.8 0.455
Republican 37.6 30.8 0.471

Independent/Other 15.8 15.4 0.855
N 8,628 1,299
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B Narrative Dynamics: All Behaviors

Table B.2 presents the statistical significance and direction of estimates of the linear trend
in the share of participants believing that a behavior is effective. We first group the survey
periods into different time periods, each one associated with an upward or a downward
phase in average perceived risk (we find similar phases if we look at infection prevalence).
This results into five periods: an initial downward phase from the first pandemic wave
(t = 2, · · · , 6), and the upward and downward phases of waves two (resp. t = 6, · · · , 9
and t = 9, · · · , 14) and three (resp. t = 14, · · · , 21 and t = 22, · · · , 29). For each behavior
and period, we estimate the regression σt = α + βt + εt, where σt is the share believing
the behavior is effective. Figure B.1 depicts the belief dynamics across all behaviors.

Table B.2: Trend regressions for narrative adoption across behaviors

wave 1 wave 2 wave 3
Average perceived risk ↓ ↑ ↓ ↑ ↓
Share believing that is effective to. . .

wear mask → ↑ ↓ ↑ ↓
avoid. . .

restaurants ↓ → ↓ ↑ ↓
public places ↓ → ↓ ↑ ↓
clinics/hospitals ↓ → ↓ ↑ ↓
travel → → ↓ ↑ ↓
high-risk people ↘ ↑ ↘ → ↓

wash hands → ↑ → → ↓
no. obs 5 4 6 8 8
↓, ↑: p-value< .05; ↘: p-value< .1; →: p-value> .1
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Figure B.1: Share of agents who think the behavior (left axis) is effective and average
perceived risk (right axis)
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Table B.3 presents the interquartile range of the number of individual belief switches
between ‘behavior is effective’ and ‘behavior is not effective’ (column 2), and the fraction
of participants that switched beliefs at least once (column 3). Column 4 shows, using
fixed-effect linear regressions with robust std. errors, whether the increase in perceived
risk is associated with an increase in the probability of switching to ‘behavior is effective’.
The dependent variable equals −1 if the agent switched from effective to not effective,
0 if no switch took place and 1 if the switch was from not effective to effective. Similar
results were obtained by estimating conditional ordered logit regressions.

Table B.3: Number of belief switches across behaviors

Belief about IQR #switches %Switchers Effect of ∆pit

wear mask 0 − 4 73 ↑
avoid. . .

restaurants 0 − 4 65 ↑
public places 0 − 3 49 ↑
clinics/hospitals 0 − 6 73 ↑
travel 0 − 4 60 ↑
high-risk people 0 − 3 50 ↗

wash hands 0 − 2 38 →
no. obs ∼ 168K

p-values computed using robust standard errors; ↑: p < .01; ↗: p < .05; →: p > .05
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C Belief Switching and Information Sources

Table C.4: Logit Regressions on the probability to switch beliefs: Other behaviors

Mask Public Places Hospitals High-risk indiv. Travel Wash hands
Information Source

Public Health Officials 0.788∗∗∗ 0.686∗∗∗ 0.947∗∗ 0.725∗∗∗ 0.781∗∗∗ 0.647∗∗∗

Mainstream TV 0.753∗∗∗ 0.686∗∗∗ 0.904∗∗∗ 0.788∗∗∗ 0.729∗∗∗ 0.813∗∗∗

Fox News 1.192∗∗∗ 1.109∗ 1.081 0.933 1.137∗∗ 0.954
Fox News and Public Health Officials 1.109 1.325∗∗∗ 1.040 1.305∗∗∗ 1.291∗∗∗ 1.498∗∗∗

Fox News and Mainstream TV 1.141∗ 1.215∗∗∗ 1.078 1.271∗∗∗ 1.082 1.130
Friends, Coworkers and Social Media 1.099∗∗∗ 1.078∗∗ 0.967 0.996 1.070∗∗∗ 0.935∗

Party
Republican 1.807∗∗∗ 1.949∗∗∗ 1.003 1.567∗∗∗ 1.863∗∗∗ 1.224∗∗∗

Independent/Other 1.521∗∗∗ 1.442∗∗∗ 0.999 1.514∗∗∗ 1.494∗∗∗ 1.401∗∗∗

Perceived Risk 0.998∗∗∗ 0.994∗∗∗ 0.997∗∗∗ 0.996∗∗∗ 0.994∗∗∗ 0.999
Change in Perceived Risk 1.003∗∗∗ 1.004∗∗∗ 1.002∗∗∗ 1.003∗∗∗ 1.004∗∗∗ 1.002∗∗

Observations 63,574 63,574 63,573 63,574 63,574 63,575

Note: Odds ratios from logit regression of changes in belief from previous wave.
All regressions include the following set of demographic controls: urban category, age, household income, education and gender.
p-values computed using robust standard errors; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D Omitted Proofs

Proof of Proposition 1. We show existence and uniqueness up to a measure zero subset
of agents by arguing that eq. (7) has a unique solution. First, note that the left hand
side (LHS) of eq. (7) is increasing and continuous, while the right hand side (RHS) is
decreasing and continuous. Second, the RHS is equal to F (gn(θ)) when α∗

n = 0, which is
strictly positive given that F has full support. Finally, the RHS is equal to γF (gn(θ)) < 1
when α∗

n = 1. Accordingly, the RHS is strictly higher than the left hand side at α∗
n = 0

and strictly lower than the LHS at α∗
n = 0, implying that they must cross exactly once

at α∗
n ∈ (0, 1). This also means that σ∗

n > 0, since F (gn(θ)(1 − α∗
n)) > 0 by F having full

support on (0, c̄).
To prove that σ∗

n < 1 note that, by assumption, c̄ > maxθ gn(θ) > gn(θ)(1−α∗
n) for all

θ, n. Hence, F having full support on (0, c̄) implies that F (gn(θ)(1 − α∗
n)) < F (c̄) = 1.

Proof of Proposition 2. The first part of the proposition directly follows from the fact
that the RHS of eq. (7) is increasing in gn(θ) for all α∗

n ∈ [0, 1]. Hence, since the RHS is
strictly decreasing in αn, an increase in θ would require α∗

n to go up until the LHS equals
the RHS.

To prove the second part, we characterize σn(θ) as a fixed point. By eq. (7) and
Proposition 1, σn(θ) is the unique solution σ ∈ (0, 1) to equation

σ = F (gn(θ)(1 − γF (gn(θ)) − (1 − γ)σ)). (D.1)

Note that the RHS of (D.1) is decreasing in σ. Hence, to prove that σn(θ) is strictly
increasing if eF (x) < 1 it suffices to pin down the necessary and sufficient condition for
the RHS to be strictly increasing in θ.

Denote by h(θ) expression f(gn(θ)(1−γF (gn(θ))−(1−γ)σ)). Differentiating the RHS
of (D.1) w.r.t. θ we obtain

h(θ) [g′
n(θ)(1 − γF (gn(θ)) − (1 − γ)σ) − γgn(θ)f(gn(θ))g′

n(θ)]

= h(θ)g′
n(θ) [1 − γF (gn(θ)) − (1 − γ)σ − γgn(θ)f(gn(θ))] .

Since h(θ) and g′
n(θ) are strictly positive, this expression is positive if and only if

1 − γF (gn(θ)) − (1 − γ)σ − γgn(θ)f(gn(θ)) > 0. (D.2)

We can rewrite this condition as

1 − F (gn(θ)) + (1 − γ)(F (gn(θ)) − σ) − γgn(θ)f(gn(θ)) > 0.
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Dividing by 1 − F (gn(θ)) and rearranging we obtain

1 + (1 − γ)F (gn(θ)) − σ

1 − F (gn(θ)) > γ
gn(θ)f(gn(θ))
1 − F (gn(θ)) .

Equation (D.1) implies that σ < F (gn(θ)) for all θ so the LHS of this expression is strictly
greater than one. Accordingly, we can find K > 1/γ given by

K = 1
γ

(
1 + (1 − γ)F (gn(θ)) − σn(θ)

1 − F (gn(θ))

)

such that condition (D.2) is satisfied if and only if eF (gn(θ)) < K.

Proof of Lemma 1. First, notice that g being increasing implies that there exists a unique
θ̂ such that g(θ̂) = ci for all ci ∈ [g(0), g(1)]. In addition, since pn(0|a, ·) is increasing for
all a then there exist p

i
, pi such that pn(0|1, θ̂) = p

i
and pn(0|0, θ̂) = pi. But then, since a

rational agent chooses a = 1 if ci < g(θ), we must have that

ci = g(θ̂) = pn(0|0, θ̂) − pn(0|1, θ̂) = pi − p
i
.

Finally, the continuity of pn(0|a, ·) yields the expressions in eq. (8).
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E Survey Questions

Infection Status:

Q1: Have you been tested for the coronavirus since [DATE OF PREVIOUS SURVEY]
(when you last took our coronavirus survey? If so, what was the result?

1. I have been tested and I tested positive (I had coronavirus)

2. I have been tested and I tested negative (I did not have coronavirus)

3. I have been tested and I do not know the result

4. I have not been tested

Q2: Whether or not you have had a coronavirus test, has a doctor or another healthcare
professional diagnosed you as having or probably having the coronavirus since [DATE OF
PREVIOUS SURVEY]?

1. Yes

2. No

3. Unsure

Q3 [if Q1 ̸= 1 & Q2 ̸= 1]: Do you think you’ve been infected with the coronavirus since
[DATE OF PREVIOUS SURVEY]?

1. Yes

2. No

Perceived Infection Risk:

On a scale of 0 to 100 percent, what is the chance that you will get the coronavirus in the
next three months? If you’re not sure, please give your best guess.
[0%-100% Visual Linear Scale]
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Beliefs about Effectiveness of Preventive Behaviors:

How effective are the following actions for keeping you safe from coronavirus

[Random order of the items on the list]

Extremely Somewhat Somewhat Extremely
Ineffective Ineffective Effective Effective Unsure

Wearing a face mask
such as the one
shown here

Praying
Washing your hands
with soap or
using hand
sanitizer frequently
Seeing a doctor if
you feel sick
Seeing a doctor if
you feel healthy but
worry that you were
exposed
Avoiding public spaces,
gatherings and crowds
Avoiding contact with
people who could be
high-risk
Avoiding hospitals
and clinics
Avoiding restaurants
Avoiding travel
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Adoption of Behaviors:

Which of the following have you done in the last seven days to keep yourself safe from
coronavirus Only consider actions that you took or decisions that you made personally.

• Worn a mask or other face covering

[Yes/No]

• Prayed

[Yes/No]

• Washed your hands with soap or used hand sanitizer several times per day

[Yes/No]

• Visited a doctor

[Yes/No]

• Avoided public spaces, gatherings, or crowds

[Yes/No]

• Avoided contact with people who could be high-risk

[Yes/No]

• Avoided eating at restaurants

[Yes/No]

Sources of Information:

Which of the following information sources have you used to learn about the coronavirus
in the past seven days?
[Random order of the items on the list]

• Local public health officials such as officials from your county health department

[Yes/No]

• The US Department of Health and Human Services (HHS)

[Yes/No]

• The Centers for Disease Control and Prevention (CDC)

[Yes/No]
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• The World Health Organization (WHO)

[Yes/No]

• Your contacts on social media (Facebook, Twitter, etc.)

[Yes/No]

• Your close friends and members of your family

[Yes/No]

• Your coworkers, classmates, or other acquaintances

[Yes/No]

• Your physician

[Yes/No]

• Public television and radio

[Yes/No]

• Fox News

[Yes/No]

• CNN

[Yes/No]

• MSNBC

[Yes/No]

• NBC News

[Yes/No]

• ABC News

[Yes/No]

• Your local newspaper

[Yes/No]

• National newspapers such as the New York Times, The Washington Post, and USA
Today [Yes/No]

• Your local TV news

[Yes/No]
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• President Trump

[Yes/No]

• Vice President Pence

[Yes/No]

Individual Characteristics:

A comprehensive set of demographic variables is provided with each UAS survey. The
complete list can be found at this link.
Political affiliation was obtained from the UAS election surveys, accessible at this link.
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