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Abstract

This paper studies equilibrium selection in large coordination games played
by heterogeneous agents, such as models of bank runs, currency attacks or
technology adoption. Player payoffs are affected by the average action and the
player’s type, as well as a global parameter reflecting economic fundamentals.
I introduce the notion of ex ante risk dominance and show that it coincides
with the global games selection in binary-action supermodular games with
payoffs that are separable in average action and type. Ex ante risk dominance
provides an economic interpretation behind the global games selection in terms
of maximizing ex ante expected payoffs under pessimistic beliefs. I characterize
the ex ante risk dominant equilibrium, pinning down the presence of tipping
points in terms of economic fundamentals. I also show that without payoff
separability the global games selection may not be robust to changes in the
distribution of signal noise.
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1 Introduction

Coordination problems are central to the study of many economic phenomena, such

as bank runs, technology adoption, currency crises, tax evasion or the emergence of
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cryptocurrencies.’ In these models, actions are strategic complements in the sense
that, as the fraction of agents in the population taking a particular action grows,
e.g., more depositors withdraw their money from a bank, so do the incentives of any
single agent to take such an action.

A methodological challenge in these models is the fact that complementarities
typically bring about multiplicity of equilibria, which might limit the ability to pro-
vide sharp predictions and develop specific recipes for economic policies and insti-
tutional reform. To address this challenge, the literature on global games (Carlsson
and van Damme, 1993; Morris and Shin, 1998) has proposed an equilibrium selec-
tion mechanism based on the introduction of incomplete information in the form
of idiosyncratic noise about some common payoff parameter or ‘economic funda-
mental’, e.g., a bank’s liquid assets available to fend off a potential wave of deposit
withdrawals. The global games selection has proved very appealing, especially in
models with homogeneous agents. The reasons are twofold. First, this approach
provides a tractable characterization of equilibrium that is in many cases robust to
different specifications of the noise. Second, it leads to an intuitive interpretation
of the selected equilibrium as being the risk dominant equilibrium in the underlying
complete information game.

An important feature of many of the above coordination problems is that agents
exhibit heterogeneous incentives that go beyond idiosyncratic differences in infor-
mation about economic fundamentals. These differences are driven, for instance,
by heterogeneity in financial portfolios, adoption costs or preferences (e.g., risk at-
titudes). Accordingly, the introduction of heterogeneity is useful to understand its
interplay with strategic complementarities and how it can affect coordination. More-
over, accounting for agent heterogeneity is essential to do quantitative and empirical
work with these models. However, while the global games selection can be extended
to games with heterogeneous agents (Frankel, Morris and Pauzner, 2003), there exist
only limited results on the characterization of the selected equilibrium specific to

particular applications. Because of this, the economic content behind the selection

!An incomplete list of models includes bank runs (Diamond and Dybvig, 1983; Postlewaite
and Vives, 1987; Goldstein and Pauzner, 2005; Rochet and Vives, 2004), currency and balance-of-
payments crises (Obstfeld, 1986, 1996; Morris and Shin, 1998), technology adoption (Dybvig and
Spatt, 1983; Farrell and Saloner, 1985; Katz and Shapiro, 1985), tax evasion (Bassetto and Phelan,
2008), regime change (Angeletos et al., 2007; Edmond, 2013), crime waves (Bond and Hagerty,
2010), and blockchain economics (Abadi and Brunnermeier, 2018).



and its robustness to the specification of noise are not fully understood.

This paper addresses these issues by analyzing the properties of the global games
selection in canonical coordination games with binary actions played by heteroge-
neous agents. In the model each agent chooses and action a; € {0,1}, and payoffs
depend on the average action in the population—which reflects the fraction of agents
taking action one, a common parameter 6 and a private type that is heterogeneously
distributed in the population. A higher type is associated with stronger incentives
to take action one. Strategic complementarities stem from the fact that payoff dif-
ferences between taking action one and action zero are increasing in the average
action. In the global games version of the game agents do not observe the com-
mon parameter and instead receive a noisy signal of 6, which leads to equilibrium
uniqueness. By taking the noise to zero the unique equilibrium converges to one
of the Nash equilibrium of the game in which 6 is common knowledge. This limit
equilibrium represents the global games selection.

This paper makes several contributions. First, Section 2 introduces a key sepa-
rability condition on payoffs that leads both to a tractable characterization of the
global games selection and to its invariance with respect to the distribution of noise.
Payoff separability means that the effect of the average action on payoffs must be
symmetric (after some normalization) across player types, even though different
types may exhibit different ‘intrinsic’ incentives to take a particular action. In addi-
tion, Section 3 identifies the necessary and sufficient conditions for the presence of
multiple Nash equilibria in the complete information game. These are the conditions
under which the global games selection, defined in Section 4, has bite.

Second, I define in Section 5 the notion of ex ante risk dominance for games
with separable payoffs and show that the global games selection picks the ex ante
risk dominant Nash equilibrium. Ex ante risk dominance has the following economic
meaning. Consider an agent that, before learning her type, believes that she will
always be the marginal type, i.e., the type that is indifferent between adopting
(a; = 1) and not adopting (a; = 0) and that agents with higher types adopt while
lower-type agents do not adopt. Such beliefs are pessimistic in the sense that the
agent considers her to be the agent with the weakest incentives to take a particular
action. The ex ante risk dominant strategy profile is then the Nash equilibrium that
maximizes the ex ante expected payoffs of an agent with such pessimistic beliefs. I

show that, in addition to providing economic content to the global games selection,



ex ante risk dominance leads to a very tractable characterization of the selection rule
based on the common payoff parameter. Specifically, it identifies the tipping points
of 6 at which the adoption rate, i.e., the average action, discontinuously jumps and
pins down the magnitude of the jump. I also provide the conditions under which
a unique tipping point exists, which depend on the trade-off between the degree of
heterogeneity and the sensitivity of individual payoffs to the average action.

Finally, I show in Section 6 that payoff separability is a tight condition for the
invariance of the global games selection. Specifically, I show that the selection
is ‘uniform’ under payoff separability, i.e., is not affected by the distribution of
noise, and that we can always find non-separable payoffs under which the selection
changes with the distribution of noise. Combined, our results reveal that the lack
of robustness of the global games selection is linked to the presence of asymmetric
average action effects, and that such asymmetries also preclude us from having a
tractable characterization and a clear economic meaning of the selection.

The characterization of the selection in terms of ex ante risk dominance and
the role that payoff separability plays can be traced to a key property of agents’
beliefs about the average action in the global game, first identified by Sakovics and
Steiner (2012). This property implies that types associated with a tipping point,
i.e., those who switch actions as their signals indicate that 6 is at the tipping point,
believe on average that the average action is uniformly distributed. Hence, under
payoff separability we can average payoffs across types by taking the expectation
of the effect of the average action using the uniform distribution, since this effect
is the same for all players. I show that these average payoffs are equivalent to the
ex ante expected payoffs of a player believing that she will always be the marginal
type. This equivalence also illustrates why the uniform selection can fail without
payoff separability: when average effects are not symmetric we no longer can use
the uniform distribution to compute average payoffs of the types associated with a
tipping point, since individual beliefs cannot be separated from payoffs and thus can
no longer be averaged out. As I show in Section 6, these individual beliefs depend
both on the payoff structure and on the distribution of noise, making the selection

sensitive to the latter.

Related Literature. The paper is closely related to the work on global games
with heterogeneous agents of Frankel et al. (2003), Sakovics and Steiner (2012) and



Drozd and Serrano-Padial (2018). Frankel et al. (2003) propose the global games
selection for games with heterogeneous payoffs and define the notion of uniform se-
lection as being independent of the noise distribution. They show the existence and
uniqueness of equilibrium and present characterization results for some classes of
games that do not include the kind of coordination games studied here. Sakovics
and Steiner (2012) study regime change games with heterogeneous payoffs and iden-
tify the mentioned condition of equilibrium beliefs, which they use to characterize
the global games selection. Regime change models admit only symmetric equilibria
in the global game, which imply the existence of a single tipping point that involves
the whole population of players. Drozd and Serrano-Padial (2018) extend the char-
acterization to games with asymmetric equilibria in the context of a model of credit
enforcement frictions. I build on these papers by generalizing the characterization
in Drozd and Serrano-Padial (2018) to canonical binary-action games with asym-
metric equilibria, by providing economic content behind the selection in terms of ex
ante risk dominance, and by identifying necessary and sufficient conditions for the
selection to be uniform.

There are also a few recent papers that apply global games techniques to models
with preference heterogeneity. For instance, Corsetti et al. (2004) analyze currency
crises in a population with large and small traders. Abadi and Brunnermeier (2018)
use the approach of Drozd and Serrano-Padial (2018) to study blockchain economics
and the market for cryptocurrencies, while Dai and Yang (2018) look at the emer-

gence of organizations when the distribution of types is uniform.?

2 Model

There is a continuum of players of measure one playing a two-action simultaneous
game. Each player i € [0, 1] chooses action a; € {0,1}. Player payoffs, denoted by
Ul(ai,a,0,w), depend on own action a; and on the average action a. The average
action represents the mass of agents choosing action 1 and thus I also refer to it as

the adoption rate. In addition, payoffs depend on a ‘global’ parameter § € © C R,

2There exists a related literature on coordination in networks, e.g., Golub and Morris (2017)
and Leister et al. (2018). In these models, due to the bilateral nature of the interaction between
agents, beliefs are represented by expectations of the individual actions of each neighbor, rather
than distributions over the average action.



where © is a closed bounded interval, and on the player’s type w € R, which is
distributed in the population according to cumulative distribution function F(w).
F' is continuous with support [w,w]. Both U and F' are common knowledge.

Payoffs are continuous and bounded. Let AU (a, 8, w) := U(1,a,0,w)-U(0,a,d,w)
be the payoff difference between taking action 1 and action 0. I make the following

assumption about payoffs.
Assumption 1. Payoffs satisfy the following properties:

(i) AU is bounded, Lipschitz continuous and increasing in a, 6 and w. That is, U

exhibits increasing differences w.r.t. a, 0 and w.

(ii) There exist § > inf © and 6 < sup © such that AU(1,0,w) < 0 if § < 6 and
AU(0,0,w) >0 if 0 > 0 for all w.

Increasing differences with respect to the average action leads to strategic comple-
mentarities of players’ actions, that is, a higher adoption rate strengthens incentives
to adopt. Similarly, a higher 6 increases the incentives to take action 1, while higher
types w have stronger incentives to take action 1 than lower types. Condition (ii)
involves the presence of dominance regions, that is, ranges of parameter values at
which all player types have a strictly dominant strategy. Such a condition ensures
that the global game version of the model has a unique equilibrium.

I next define payoff separability, which will play an instrumental role in both the
characterization of equilibrium and the robustness of the global game selection to

different specifications of noise.

Definition 1. Payoffs are separable in w and a if there exist Lipschitz continuous

and bounded functions vy, vy, ve and constant & > 0 such that
Ulai,a,0,w) = vo(a;, a,0)v1(0,w) + ve(a;, 0,w), v (0, w) > & for all 6,w.

Payoff separability imposes a strong symmetry restriction on the effect of the
average action on payoffs: a change in the average action leads to the same change
in payoffs for all players, up to scaling up or down payoffs by a type-contingent
scalar v1(0, w). Accordingly, separable payoffs are the sum of a common component

and an idiosyncratic or private component, once payoffs are normalized.



Note that payoff separability leads to a; = 1 yielding a higher payoff than a; =0

for given average action a if u(a, @) + v(6,w) > 0, where

v9(1,0,w) — v9(0,0,w)

u(a,d) :==vy(1,0,a) — v9(0,a,d) and v(f,w) := 01 (0. 0)
1\Y,

Under separable payoffs we can define normalized payoffs as

Ulai,a,0,w) = vo(a;, a,0) 4+ va(a;, 0, w) /v, (0, w),

and normalized differences as

~ AU(0,a,w)

AU (0, a,w) := or(0.10) = u(a,0) + v(0,w).

I first analyze the game under complete information and then study its global

game version. To ease exposition, all proofs are relegated to the Appendix.

3 Equilibrium of the Complete Information Game

The game is of complete information if # is common knowledge. Let a denote the
profile of strategies in the population. A Nash equilibrium (NE) of the complete

information game is a strategy profile a* satisfying

ai =1if AU(a",0,w) > 0, (1)

ai =01if AU(a",0,w) <0, (2)

1
o = / o di. (3)
0

A profile a is monotone if higher types exhibit higher actions. If a profile is monotone
then it is characterized by its marginal type, i.e., the lowest type choosing a; = 1. If

w is the marginal type of profile a then the average action is given by a = 1 — F(w).

Proposition 1. Profile a* is a NE of the complete information game iff it is mono-

tone and satisfies one of the following conditions:



1. a* =1— F(w*), where the marginal type w* is a solution to

AU(1 - F(w"),0,w") = 0; (4)

2. a* =0 with AU(0,0,w) < 0 for all w;
3. a* =1 with AU(1,0,w) > 0 for all w.

The monotonicity of equilibrium follows from the fact that higher types have
higher incentives to adopt, while equation (4) reflects that the marginal type is
indifferent between adopting or not. Conditions 2) and 3) respectively represent
symmetric equilibria in which no one and every one adopts. In what follows, I
indistinctly use the word equilibrium to refer to profile a* or to marginal type w*.

Equilibrium multiplicity arises when (4) has more than one solution or when
it has one solution and conditions 2) or 3) in Proposition 1 are satisfied. The
next proposition identifies the necessary and sufficient conditions for the presence
of multiple equilibria for a non-degenerate subset of O, that is, for a subset with

positive Lebesgue measure.

Proposition 2. There exists multiple NE for a non-degenerate set of 0 if and only if
there exists a pair (6',w') such that AU(1—F(w'),0',w") =0 and AU(1—F(w), 0, w)

is strictly decreasing in w at (8',w’).

The existence of multiple equilibria is modulated by two opposing forces shaping
AU(1— F(w), 0, w): heterogeneity and contagion. Heterogeneity implies that higher
types have higher incentives to adopt at any level of the average action. Hence, a
higher marginal type, keeping the average action constant, increases AU. Contagion
is driven by the fact that a lower average action reduces the incentives to adopt of all
types. Accordingly, as the marginal type w increases the average action decreases,
pushing down AU. That is, as the marginal type goes up she has higher ‘intrinsic’
incentives to adopt but strategic complementarities dampen such incentives due to
a lower adoption rate in the population. In this context, the heterogeneity of types
embodied in F' affects the strength of strategic complementarities by how fast the
average action decreases with the marginal type. The faster it goes down the more
likely AU(1 — F(w),0,w) is to be decreasing. The intuition is straightforward:

multiple equilibria are due to contagion among heterogeneous agents, and these



effects are stronger when they involve a sufficiently high mass of players that are
not too heterogeneous.

The following example illustrates the effect of heterogeneity.

Example 1 (Investment game). Players decide whether to invest (a; = 1) or not
(a; = 0). The payoff from investing is u(1,a,60,w) = 0(1 + a + w?) with w € [0, 1],
while the payoff from not investing is always 1, i.e., AU (a,0,w) = 0(1+a+w?)—1.

Notice that for § > # = 1 investing is a dominant strategy for all types, while
not investing is a dominant strategy if § < 8 = % Consider two alternative type
distributions: uniform (F(w) = w) and quadratic (F(w) = w?).

Under the uniform distribution, AU(1 — F(w), 0, w) = 20 — 1 — 6(w — w?), which
is strictly convex in w for § > 0 and reaches a minimum at w = 0.5 and a maximum
at w € {0,1}. Hence, by Proposition 2, there are multiple equilibria in an interval
of 0, specifically for all § € [l é] . Figure 1 depicts AU(1 — F(w), 8, w) for § = %.

0.12 +
0.10 +
0.08 1
0.06 1
0.04 +

0.02 +

oWy 0.;5 ’““3 0.;0 “§ 0.;5 1.80
Figure 1: Multiplicity of Equilibria

The figure shows the existence of three equilibria. The first equilibrium corre-
sponds to full adoption, i.e., wj = 0 since AU(1,6,0) > 0. The other two correspond

to the solutions of AU(1 — F(w*), ¢, w*) = 0, which are wj = 1 and w} = %, and

exhibit adoption rates 1 — F(w}) = % and 1 — F(w}) = %, respectively. The convex-

ity of AU(1 — F(w), 6, w) is driven by the fact that under the uniform distribution,

the average action decreases initially faster and eventually slower than the intrinsic



payoff from adoption of the marginal type, given by w?. It is worth noting that, of
the three equilibria in Figure 1, only the high adoption (w}) and the low adoption
(w3) equilibria are stable.?

In contrast, under the quadratic distribution, AU (1 — F(w),6,w) = 26 — 1 for
all w. Hence, by Propositions 1 and 2 there is a unique equilibrium for any 6 # 0.5.
If @ > 0 the unique equilibrium involves a* = 1 since AU (1 — F(w), 0, w) > 0, while
a* = 0 if # < 0.5. The reason behind uniqueness is that F' concentrates its mass
precisely where incentives grow at a faster rate, i.e., at high values of w. Hence, at
types where incentives grow slow (fast) the average action is also decreasing slowly

(fast), perfectly offsetting each other.

4 The Global Games Selection

The Global Games (GG) approach to resolve equilibrium indeterminacy (Frankel
et al., 2003) is based on introducing incomplete information about parameter 6.
Specifically, each agent gets a noisy signal s = 6 + vn, where v > 0 is the noise scale
parameter, and 7 is independently distributed according to continuous distribution
H,, with full support on [—1/2,1/2] and density h,, which is allowed to depend
on the agent’s type. We assume the the exact LLN applies within type. A player
strategy in the global game is a mapping a;(s) from signals to actions in {0, 1}.

The idiosyncratic nature of signal noise prevents agents to use their private
signals as correlation devices to coordinate their actions, leading to a unique equi-
librium. Moreover, since agents use their signals to extract information about 6, the
average action in the selected equilibrium is increasing in 6, leading to a selection
rule driven by “economic fundamentals”, i.e., common payoff parameters.

The goal of the GG selection is to induce uniqueness of Bayes Nash equilibrium in
the game with incomplete information and then select an equilibrium of the complete
information game by taking the limit as v — 0. For convenience, I assume that agents
believe 6 is uniformly distributed in ©, which leads to agents’ posteriors that also are

uniform. I discuss below how relaxing this assumption does not substantively alter

3If the adoption rate moves away from a} by an infinitesimal amount, standard dynamics would
lead to one of the two other equilibria. This is because AU(1 — F(w),0,w) > 0 on (w},w3) so
agents with types in this interval would switch to a; = 1 if the adoption rate raises above 1 —F'(w3).
Likewise, types w > w3 would switch to a; = 0 if the adoption rate falls below 1 — F(w3).
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our results. This is because any well-behaved prior leads to a posterior distribution
that approximates the uniform distribution as its support collapses into the actual
value of § when v — 0 (Frankel et al., 2003).

I first establish that there is a unique equilibrium in the global game for suffi-

ciently small noise.

Proposition 3. There exists v > 0 such that for all v < U there is essentially a

unique equilibrium. Moreover, equilibrium strategies follow a cutoff rule:

ai(s) = 0 s<k’(w) (5)

1 s>k (w),
where k¥ satisfies the system of indifference conditions
E[AU(a,8,w)|k"; s = k"(w)] =0 for all w € [w,w], (6)

and E[AU (a,0,w)|k", s] denotes expected payoff differences conditional on receiving

signal s when all players use cutoff strategies given by kY.

The proof is based on standard arguments in the global games literature and is
adapted from Drozd and Serrano-Padial (2018). First, the fact that payoffs exhibit
increasing differences w.r.t. signals and actions implies that the global game is a
supermodular game. From existing results on supermodular games (Milgrom and
Roberts, 1990; Vives, 1990; Van Zandt and Vives, 2007), we know that the game has
both a least and a largest equilibrium. Moreover, players follow monotone strategies
in these equilibria, that is, each player uses a signal cutoff k*(w) above which they
choose action a; = 1. Second, I show that shifting up all cutoffs by the same amount
does not affect agents’ beliefs about adoption rates when they receive their cutoff
signal, while it does lead to higher expectations about 6. I exploit this fact to prove
that, as we move up cutoffs from the least to the largest equilibrium, expected payoffs
differences go up and thus there can be only one equilibrium satisfying indifference
conditions (6) (up to differences in behavior at cutoff signals).

As Frankel et al. (2003) point out, the translation invariance of agents’ beliefs
about adoption rates is driven by the uniform prior and the independent, additive
noise. Together they imply that an agent with signal s believes that 6 is uniformly

distributed in [s — v/2,s + /2] and that other agents’ signals fall in the interval
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[s—v, s+v]. Hence, as cutoffs are shifted, an agent receiving her cutoff signal believes
the support of # and thus the distribution of other agents’ signals shift by the same
amount as everyone’s cutoff. But since the adoption rate is given by the mass of
agents with signals above their respective cutoffs, the agent’s beliefs about adoption
rates, conditional on receiving her cutoff signal, do not change.*

A desirable property of the GG selection is to be robust to different noise dis-
tributions H,,, given that the goal is to pin down equilibrium in the limit and,
hence, the introduction of noise is just a convenient technical device to introduce

miscoordination risk. In such a case, the GG selection is said to be uniform.

5 Characterizing the Global Games Selection

In this section I introduce the notion of ex ante risk dominant equilibrium in the
complete information game and show that it coincides with the GG selection under
payoff separability. By doing so I am able to (i) characterize the selected equilibrium
without relying on the introduction of incomplete information, and (ii) provide an
economic meaning behind the GG selection under heterogeneity, which has thus far
remained an open question in the literature. In the next section I show that payoff
separability is a tight condition for the GG selection to be uniform. Combined,
these results imply that the symmetry of average-action effects implied by separable
payoffs links the robustness of the GG selection to a natural economic interpretation

of the selection rule.

5.1 Preliminaries: Games with Homogeneous Payoffs

In order to introduce the notion of ex ante risk dominance and its connection to the
GG selection, it is useful to first analyze the case in which there is no payoff relevant
heterogeneity, that is, U(a;, a,0,w) = U(a;, a,0) and AU(a,8,w) = AU(a,0) for all
w. In this context, one can extend the traditional notion of risk dominance in 2 x 2
games to the games with a continuum of players studied here. Specifically, in a 2 x 2
game a NE is risk dominant if the equilibrium strategy of each player maximizes

her payoff given her belief that her opponent chooses her strategy randomly. We

4With a non-uniform prior, translation invariance holds approximately for v sufficiently small.
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can apply the same type of Laplacian beliefs to the average action in the population

to arrive to the following definition of risk dominance.

Definition 2. A NE a* in the homogeneous payoff game is risk dominant if a*
maximizes player 1’s payoffs when she believes that the average action is uniformly

distributed, 1.e.,

1
aleif/ AU(a,8)da > 0.
0

Under homogeneous payoffs it is easy to check that the game has two symmetric

equilibria for all 6 € [0, 6], respectively involving zero adoption (af = 0 Vi) and full
adoption (aj = 1Vi). There is also an unstable partial adoption equilibrium.’

The fact that AU (a, 6) is increasing in 6 implies that the no adoption equilibrium
will be risk dominant at low values of 8, while the full adoption equilibrium will be
risk dominant at high values. Accordingly risk dominance leads to the following

selection rule:®
0

0 0<
1 0>0

. where 6§ solves /1 AU(a,0)da = 0. (7)
0

Now consider the GG selection and, for simplicity, assume that the distribution of

noise is the same for all types. It turns out that, as Morris and Shin (2003) illustrate,

the RD equilibrium coincides with the GG selection, that is, the signal cutoff in (5)

satisfies k(w) = 0 in the limit as v — 0.

Such an equivalence is brought by the additivity and independence of noise:
because of payoff homogeneity, all players use the same signal cutoff in equilibrium.
Hence, an agent receiving the signal cutoff s = £(w), who is indifferent between the
two actions, believes that all agents with lower signals than s do not adopt while
those with higher signals adopt. That is, this agent believes that the aggregate
action is a = 1 — Prob(s’ < s), which is equal to the mass of agents with noise terms
above her own noise term 7: a = 1 — H(n). Since the agent does not observe 7, she
deems H(n) and thus a as random variables that are uniformly distributed. This

is known as the Laplacian property in global games (Morris and Shin, 2003), and

SIn this case a* satisfies AU(a*,6) = 0 and all agents are indifferent between adopting or not.
6Since # = 0 is a zero probability event, I assume without loss of generality that the full adoption
equilibrium is selected in the degenerate case in which both equilibria are risk dominant.
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leads to the above cutoffs given that s — 6 as v — 0 and thus
1
lim E[AU(a,0) . K (w)] = / AU(a, 6)da.
v—r 0

An ex ante interpretation. Selection rule (7) can be rewritten as choosing the

strategy profile that maximizes expected payoffs under Laplacian beliefs, given by

1 1
/ 1{%:0}[](0,&,9)(1&—{— / 1{ai:1}U(1,a,9)da. (8)
0 0

Using the change of variable @ = 1 — F'(w) and focusing only on monotone NE

we can express the above expected payoffs as follows:”

* w

/w U(0,1— F(w),0)dF(w) +/ U(1,1 = F(w),8)dF(w). (9)
This expression leads to the following ex ante interpretation of the risk dominant
equilibrium: it is the monotone strategy profile that maximizes the ex ante expected
payoff of an agent, i.e., before learning her type, that believes her to always be the
marginal type. That is, she believes she is the highest type whenever she chooses
a; = 0 (first integral in (9)), and the lowest type when she chooses a; = 1.
Equipped with this interpretation I now introduce the notion of ex ante risk

dominance when heterogeneity is payoff relevant.

5.2 Ex Ante Risk Dominance under Payoff Separability

I define ex ante risk dominance for games with separable payoffs. As illustrated
in the case of homogeneous payoffs, it is based on the ex ante belief that a player
will always be the marginal type. These beliefs are pessimistic in the sense that,
while the player is aware of the heterogeneity of incentives and thus expects people
with stronger incentives to adopt whenever she finds adoption optimal, she focuses

(.

on the “worst case scenario” in which she is always the agent with the weakest
incentives to choose a particular action (i.e., the highest type not adopting or the

lowest type adopting). A monotonote strategy profile is ex ante risk dominant (RD)

"Since types are payoff irrelevant, there exist NE with partial adoption that are not monotone.
Since they are never risk dominant this assumption is without loss.
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if it maximizes the normalized expected payoffs of a player endowed with these
beliefs. The restriction to monotone profiles embodies the belief that higher types

have a stronger incentive to adopt.

Definition 3 (Ex ante risk dominance). A strategy profile is ex ante risk dominant

if it is monotone and its marginal type solves

max /w (0,1~ F(w), 0, w)dF(w) +/w O(1,1— F(w),0,w)dF(w).  (10)

we [ﬂ,’uﬂ w 7

Notice that, while this notion can be extended to non-separable payoffs, it is
robust to affine transformations of payoffs only when U is separable in w and a. The
reason is that any comparison of strategy profiles that relies on ex ante expected
payoffs depends on the cardinal comparison of payoffs across types. In other words,
multiplying player payoffs by some non-constant function of types v'(w) > 0 changes
the weighted average of payoffs given by (10). While the above definition takes care
of this issue by focusing on normalized payoffs, without payoff separability there
does not exist a natural way to normalize payoffs.

The next lemma shows that ex ante RD profiles are NE and presents alternative
characterizations of ex ante RD. From now on, I refer to a NE by its marginal type

w*, and denote W*(#) the set of NE marginal types associated with parameter 6.

Lemma 1. If a monotone profile with marginal type w is ex ante RD then w €

W*(0). In addition, the following statements are equivalent:
i) w* is ex ante RD;

i) w* mazximizes

1-F(w*) _ 1 ~
/ U(l,a,0,F (1 —a))da+/ U0,a,0, F (1 —a))da. (11)
0 1—F(w*)

ii) for all w* € W*(9),

/w AU(1 — F(w), 0, w)dF(w) > 0; (12)
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w) for all w* € W*(),

1—F(w*) w*
/ u(a,0)da —|—/ v(0,w)dF(w) > 0. (13)

—F(w*) w*

Being a NE directly follows from (10): if a monotone profile is not a NE then
Proposition 1 is violated and thus we can always increase or decrease its marginal
type so that the objective function in (10) goes up. Condition (ii), which follows
from the change of variable a = 1 — F'(w), provides an alternative definition of ex
ante RD: it is the monotone profile that maximizes the sum of payoffs of the marginal
types when the average action is assumed to be uniformly distributed. This leads
to the alternative interpretation of ex ante RD: a player believes, before learning
her type, that she will always be the marginal type but faces complete uncertainty
about adoption rates and hence applies the principle of insufficient reason and deems
all adoption rates equally likely. Condition (iii) is just a convenient rewriting of
Definition 3, since it helps identify the ex ante RD equilibrium by looking at the
expected value of AU(1 — F(w),0,w) between the marginal types of different NE.
Finally, condition (iv) directly follows from condition (iii) after substituting for
AU(1 - F(w),0,w) = u(l — F(w),) +v(f, w) and applying the change in variable
a =1— F(w). To interpret this condition consider two NE with marginal types w*
and w* > w*. The condition states that, when comparing the two NE, we should
look at the sum of two terms: the expected value of the symmetric average-action
effect on payoff differences assuming that the average action is uniformly distributed
in [1 — F(w*),1 — F(w*)]; and the average private component of payoff differences
for types between w* and w*'. It turns out that, as I show below, (iv) coincides with

the conditions pinning down the global games selection.

Proposition 4. An ex ante RD equilibrium exists and is generically unique, that
18, the set of O for which there is more than one ex ante RD equilibrium has zero

Lebesgue measure.

To illustrate how to pin down the ex ante RD profile using condition (iii) in

Lemma 1, consider Example 1 when F' is the uniform distribution. Recall that
14
37
in Figure 2 represents the range of types at which AU(1 — F(w), 6, w) is positive
between two NE, while the red area is associated with AU(1 — F(w),0,w) < 0.

there are three equilibria with marginal types for 6 € [ ) . The green shaded area
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Figure 2: Finding the ex ante RD equilibrium

First, notice that the (unstable) NE with marginal type wj is not ex ante RD.
Moving to the (stable) equilibrium wj or to wj increases the objective function in
(10) by either adding area A or by subtracting area B. Second, to determine whether
w} or wj are ex ante RD we need to compare the size of area A given the distribution
of types F'(w) to area B. If A is the larger area then wy is ex ante RD and otherwise
w} is the ex ante RD equilibrium. Since AU(1 — F(w), 0, w) is increasing in 6, area
A gets bigger at higher # while area B shrinks. Hence, we can find a cutoff value 0
above which wj is the ex ante RD and below which wj. This cutoff value 0 equates

the sizes of areas B and C, i.e., it is the solution to
w3 (0) w3 ()
/ AU(1 —F(w),@,w)f(w)dw:/ (20— 1 —0(w—w?)dw=0, (14)
0 0

where w}(6) is the largest solution of AU(1 — F(w),0,w) =20 —1 —0(w — w?) = 0.
This leads to 0 ~ 0.552 and w(6) = 3. Figure 3 plots the marginal type (w},,) and
the adoption rate (aj,) of the ex ante RD equilibrium for different values of 6.
This example illustrates the behavior of the selection rule based on ex ante
RD as a function of the global parameter 6, which exhibits a tipping point at 0
associated with a jump in adoption rates. The next proposition generalizes the
example by characterizing the ex ante RD as a function of the distribution of types

and the payoff structure. The characterization provides a tractable way to pin
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Figure 3: Marginal type (left) and adoption rate (right) in the ex ante RD eq.

down the tipping points associated with jumps in adoption rates. Specifically, the
proposition formally establishes that the marginal type wy,, is (weakly) decreasing
and varies continuously with 6 at all # at which the ex ante RD equilibrium is
unique. Importantly, at every # at which there are multiple ex ante RD equilibria,
an infinitesimal increase in # causes a discontinuous drop from the highest to the
lowest wy,,, associated with such 6. In the example depicted in Figure 3, wy,, drops
from % to 0 as 6 crosses the threshold 6.

First, I provide a formal definition of the ex ante RD selection, which assumes
that the lowest marginal type is picked at the set of 6 exhibiting multiple ex ante RD
equilibria. This assumption simplifies the statement of the result and is innocuous

since such a set has zero measure by Proposition 4.

Definition 4. The ex ante RD selection is the mapping wgp : © — [w, W] given by
wrp(0) = min{w* € W*(0) : w* is ex ante RD}. (15)

In addition, let wh,(0) = limsupy _y wrp(0').

Proposition 5. The function wgp is well-defined, decreasing and right-continuous.
Moreover, if there are multiple NE for a non-degenerate subset of 0, then there exists

a unique collection of parameter thresholds 60, < 05 < --- < 0, such that:

1. wgp 1s continuous at all 0 # 0;, 5 =1,--- ,n;
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2. wgp s discontinuous at 05, j = 1,--- ,n, where 0; satisfies

w+D(9j) -
max / AT - F(w), 0, w)dF(w) =0, (16)

w*EW*(0;),w*<wi p(05) J w*
and wrp drops from wip,(0;) to the smallest mazimizer of the LHS of (16);

3. U)RD(Q) =w Zf

max / " AT( = Flw), 0, w)dF(w) > 0: (17)

w*e€W+(0) J.,

4. wrp(0) = w if AU(1 — F(w),0,w) <0 for all w < @ or

max /“7 AU(1 — F(w), 0, w)dF(w) < 0. (18)

w* €W (0),w* < J
Applying condition (iv) in Lemma 1 leads to the following analytic characteri-

zation of the tipping points of the RD selection.

Corollary 1. The collection {0;}%_, defined in Proposition 5 satisfies

1-F(wrp(9;)) wip(05)

/ u(a, 8;)da + / v(8;, w)dF(w) = 0. (19)
1-F(w}p(6;)) wrp(0;)

Before showing the equivalence between the ex ante RD and the GG selection,I

provide conditions under which there is a unique tipping point.

Corollary 2. If AU(1 — F(w), 8, w) is strictly quasiconcave or decreasing in w for

all € [0,0] then wrp has a single discontinuity 0;, which satisfies (19).

The quasiconcavity or decreasingness of AU(1 — F(w'),#',w') implies that there
are at most three NE, as is the case in Example 1 and illustrated in Figure 1.
Following the intuition conveyed with Figure 2, this leads to a single switch from the
lowest to the highest adoption equilibrium, that is, to a single tipping point. This
result can be useful for doing empirical or quantitative work with models where
heterogeneity is given by unimodal type distributions, which are commonly used

in practice. The reason is that single-peaked distributions, by concentrating mass
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around its peak, make 1 — F(w) go down fast at w close to the peak and slow at w

far away from the peak, potentially causing payoff differences to be quasiconcave.

5.3 The Equivalence Result (updated in Feb 2020)

I next provide our first main result, namely, that the GG selection selects the ex
ante RD equilibrium. The GG selection is given by the limit equilibrium cutoffs
k(w) = lim,_,o k(w) in the global game. It generalizes the characterization of the
limit equilibrium put forward by Drozd and Serrano-Padial (2018), who do so in the

context of a model of credit enforcement.

Definition 5. The global games selection is the mapping wae : © — [w, W] defined
by wag(0) := min{w : k(w) = 0}, where k(w) = lim,_,0 k*(w).®

Proposition 6. If payoffs are separable then wea(0) exists and wee(0) = wrp(0)
for almost all @ € ©. That is, a NE is the limit equilibrium in the global game if and

only if it is ex ante risk dominant.

The proof follows directly from the equivalence between potential maximiza-
tion and the global games selection in quasilinear aggregative games established by
Serrano-Padial (2020). The main logic is as follows. When k(w) is strictly decreas-
ing, an agent receiving s = k(w) knows that every other agent is also getting signals
in a neighborhood of s, and hence almost all agents with types below w choose a = 0
and almost all with types above w choose a = 1. Hence, in the limit the signal re-
veals 6 and the agent perfectly anticipates the average action to be 1 — F(w). Since
she is indifferent between the two actions when she receives her signal cutoff, the

latter must satisfy
liII(l)E(AU(@, a,w)|k, s = k' (w)) = AU(k(w),1 — F(w),w) = 0.
v—r

In contrast, when k(w) = k; is constant in an interval (w;,w;.1), the agent faces
uncertainty about the fraction of agents with types in the interval that got signals
above their cutoffs, even in the limit. In particular, the agent is only certain that

the average action must be within 1 — F(w;41) and 1 — F'(w;). Accordingly, to solve

8] make the assumption, as I do in the definition of the ex ante RD selection, that the lowest
marginal type is picked at the set of § where the global game exhibits multiple limit equilibria.
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the indifference conditions of types in (w;, w;y1) we need to pin down her individual
beliefs, which depend on the payoff structure, the noise distribution and the distri-
bution of types. Nonetheless, since both their signals and their cutoffs converge to
the same limit as v — 0, we can utilize the average indifference condition of types
in (w;, w;y1) to pin down k;. Due to continuity, the limit indifference condition of

type w € (w;, w;11) can be shown to be
1 ~
/ AT(1 = Flwin) + 2(Flws) — F(w)), ki w)d Ay (2] (wi wisg)) = 0, (20)
0

where A, (z|k; W) is the cdf representing the individual belief of an agent of type
w conditional on s = k(w) about the probability that the average action of types in
W' is less than z.

Averaging the above indifference condition over types in (w;, w;41) turns out to
be key to recover k; under payoff separability because of a key property of beliefs
uncovered by Sakovics and Steiner (2012). They show that the average conditional
belief about the average action is the uniform distribution. They call this property
the belief constraint. Moreover, as the next lemma establishes, the belief constraint

also applies if we restrict attention to any measurable subset of types W’.

Lemma 2 (Belief Constraint). Given any measurable subset of types W' and any
cutoff function k : [w,w] — [inf © + v/2,sup O — /2],

/ Ay (2| WHAF (wlw € W) = z for all z € [0,1]. (21)

But notice that payoff separability requires that the effect of the average action
on payoffs is symmetric across types, since AU(0,a,w) = u(a,d) + v(,w). Hence,
the averaging of normalized payoff differences over types in (20) can be separated
into the averaging of beliefs about a and the averaging of the private component of

payoff differences v(6, w), yielding

Wi41 1
/ {/ u(a, ki)dAy (z|k; (wi, wipq)) | dF (wlw € (w;, wiy1))
w; 0

Wit 1
—l—/ v(ki, w)dF(w|w € (w;, wit1))-

w;g
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Since u(-) does not depend on w, we can interchange the limits of integration in the
first term and replace the average belief with the uniform distribution, leading to

the equilibrium condition

1—F(w;) Wit1
/ w(a ki)da + / ok, w)dF (w) = 0, (22)
l—F(wi_H) Wy,
which is equivalent to (19) in Corollary 1.
It is worth pointing out that the uniform prior facilitates both the exposition
and the proofs but it is not instrumental to obtain the results in the paper. As As
Serrano-Padial (2020) shows, the equivalence result holds under any well-behaved

prior with full support on ©.

5.3.1 Games of Regime Change

Before turning to the question of when the GG selection is sensitive to the specifica-
tion of noise, it is worth emphasizing that the equivalence between the GG selection
and ex ante RD readily extends to games of regime change. In those games, there
is a common threshold on the average adoption a(f) above which everyone finds
a; = 1 optimal and below which choosing a; = 0 is a best response for any player,

regardless of her type w. That is, payoff differences take the following form:
AU(a,0,w) =

where u is a positive function, u is a negative function, and both are increasing in
all their arguments, Lipschitz continuous and bounded.

This class of games always have a symmetric NE in which either everyone or
no one adopts action one. Both equilibria coexist for a range of ¢. This is the
class of games studied by Sakovics and Steiner (2012). They show that, under
payoff separability, the GG selection is given by a single limit cutoff k;, followed
by all types in [w, @], satisfying condition (22).? Consequently, their result directly

implies that the equivalence between the GG selection and ex ante RD also applies

91 refer the reader to the online Appendix of their paper: https://assets.acaweb.org/assets/
production/articles-attachments/aer/data/dec2012,/20091318 app.pdf.
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to games of regime change.!®

6 Uniform Selection

Payoff separability is not only behind the characterization of the GG selection and
its ex ante risk dominance interpretation, but also guarantees that the GG selection
is uniform. The latter is reflected in Proposition 6, given that the conditions pinning
down the equilibrium cutoffs are independent of the noise distribution.

The intuition behind uniform selection when payoffs are separable is as follows.
Notice that the limit cutoff is pinned down by the average indifference condition of
those types that follow the same limit cutoff and that the belief constraint implies
that, while the density associated with the individual beliefs about the average action
a may vary with H,,, the average density does not. Hence, finding the common cutoff
is akin to compute a weighted average of the effect of the average action a on payoffs
when the sum of weights is constant across noise distributions. When payoffs are
separable, the average action a has the same effect on payoffs across agent types,
so taking the average effect of a across types involves taking a weighted average of
a constant. Hence, since weights vary with H, but its sum does not, the average
effect of a is invariant to the distribution of noise.

In contrast, when payoffs are not separable, the effect of a is no longer constant
across types, and thus the dependence of individual weights on the noise distribution
can make the average effect also dependent on the noise distribution. In turn, this
leads to the limit cutoff to vary across noise distributions.

I formally show how payoff separability is instrumental to the robustness of
the GG selection through a series of results. First, I provide a characterization of
the individual beliefs of any given type about the average action of any other type.
Equipped with these individual beliefs, I then show that individual beliefs about the
average action in the population differ across noise distributions. Finally, I prove
by constructing an example that the lack of payoff separability can lead to the GG
selection not being uniform, i.e., to vary with the distribution of noise.

The next lemma characterizes individual beliefs of type w about the average

10Tt is straightforward to extend Propositions 4 and 5 to include the above class of payoffs, given
that the fact that the selected equilibrium is symmetric greatly simplifies the characterization of
the ex ante RD selection.
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action a,s of type w’, as a function of the noise distribution and the normalized
kY (w')— k¥ (w)

difference in signal cutoffs Ak(w,w’) = ~

Lemma 3. Let z ~ U[0,1]. An agent of type w receiving s = k¥ (w) believes that
1. if w' = w then ay = z;
2. if w < w then

0 2 <1—Hy(i — Ak(w,w'))
1— Hy(HY(1 = 2) + Ak(w,w'))  otherwise;

Qo) =

3. if w' > w then

1— Hy(H,'(1 = 2) + Ak(w,w')) 2z <1— Hy(—3 — Ak(w,w'))
Qqyt =
1 otherwise.

In words, the lemma establishes that an agent with type w believes that her
own-type average action is uniformly distributed, and that the average action of a
type w’ with Ak(w,w’) # 0 is fully determined by her own type average action. The
former is the Laplacian property, while the latter is driven by the exact LLN.

To gain some intuition consider the following facts. First, when a type-w agent
receives her cutoff signal k¥ (w), the noise term in the signal, given by n = (k" (w) —
0)/v, represents the cutoff for adoption of agents of her own type. That is, same-
type agents with 1’ > n adopt and, by the exact LLN, their adoption rate is given by
z = 1—H,(n). But since noise terms are i.i.d. within type, 2 is uniformly distributed.
Now consider the adoption rate of a different type w’. It is given by those with signals
above k¥(w’), i.e., with noise levels above (k¥ (w') — 6)/v. Since /v = k" (w)/v —n,
the adoption rate of type w’ is given by the fraction of type-w’ agents with with noise
levels above k(w') /v —k” /v+n, which can be written as Ak(w,w')+ H,'(1—2z). By
the LLN, such fraction is given by 1 — H,(H (1 —2)+ Ak(w,w")). Accordingly, all
the uncertainty faced by the agent can be narrowed down to her own-type average
action z. In particular, the agent adjusts up or down the adoption rate of other
types, compared to her own type, depending on whether they have a lower or a

higher signal cutoff, respectively.
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The next result establishes the dependence of individual beliefs about the average
action in the population on the noise distribution whenever there is an interval

[wj, w;t1] of types whose signals thresholds converge in the limit as v — 0.

Lemma 4. If k(w) = k; for all w € [w;,w;+1] then, for each type w € [wj, wji1]
there exists a non-degenerate subset Z,, C [0,1] and a pair of noise distributions
H,, H,, such that A, (2|k; [w;, wji1]) # Al (2]k; [w;, wji]) for all z € Z,,, where A,
and A, are the beliefs of type w about the average action in [wj, wji1] under H,, and
H

W5 respectively.

The next proposition establishes the connection between payoff separability and

uniform selection.

Proposition 7. If payoffs are separable then the GG selection is uniform. There
exist a non-separable payoff function U and type distribution F' such that the GG

selection is not uniform.

I finish this section by discussing the connection between global games and ex-
isting notions of risk dominance since they relate to players’ individual beliefs in
the game. Examples include the original definition of Harsanyi and Selten (1988),
p-dominance (Morris et al., 1995), generalized risk dominance (Peski, 2010) or iter-
ated generalized half dominance (Ilijima, 2015). In contrast to ex ante RD, all these
notions are defined using “interim” beliefs, that is, the beliefs of a player after learn-
ing her type. Because of their interim nature and the fact that the GG selection is
equivalent to a selection based on an ex ante notion of beliefs, these versions of risk
dominance are either too strong or they do not coincide with the GG selection.!!
Intuitively, these notions are based on the introduction of probabilistic beliefs that
are typically independent of the payoff structure. For instance, a NE is half dom-
inant if each player finds her equilibrium action optimal when she beliefs that her
opponents choose their equilibrium actions with probability at least a half. However,
as Lemma 3 shows, interim beliefs in the global game depend on the full structure of
payoffs via the cutoff function and cannot be determined exogenously. In contrast,

by averaging payoffs over types, the ex ante notion of risk dominance introduces ex

HFor instance, it can be shown that both a generalized risk dominant equilibrium and an iterated
generalized half dominant equilibrium fail to exist in some games with separable payoffs satisfying
Assumption 1. It can also be shown that the classical definition of risk dominance (Harsanyi and
Selten, 1988) and the GG selection lead to different equilibria in some games.
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ante beliefs with a natural interpretation that is separated from payoffs, while at the
same time allowing for interim beliefs that are endogenous to the particular payoff

structure of the game.

7 Conclusions

The paper studies a popular class of coordination games with strategic comple-
mentarities and proposes a new characterization of the global games equilibrium
selection in terms of ex ante beliefs that have an intuitive economic meaning asso-
ciated with miscoordination risk among heterogeneous agents. It also shows that
a strong form of payoff symmetry is necessary for both the characterization and
the robustness of the selection. The results allow for the tractable introduction of
heterogeneity in many economic models and to perform comparative statics analy-
sis, potentially enabling the use of those models in empirical and quantitative work

where heterogeneity plays an important role.

A APPENDIX

A.1 Proofs of Results in Section 3

Proof of Proposition 1. Since U exhibits increasing differences, if AU(a*,0,w) > 0
for some w, then AU(a*,0,w") > 0 for all w’ > w. Hence, equilibrium profile a*
must be monotone since otherwise some agents would be choosing 0 when their
payoff difference is positive or choosing 1 when their payoff difference is negative.
Given the monotonicity of a*, equation (4) ensures that the lowest type choosing
a; = 1 (or the highest type choosing a; = 0) is indifferent between the two actions.
The last two conditions describe NE in which every agent type has an strict incentive

to either take action O or action 1. OJ

Proof of Proposition 2. The “only if” part follows from the fact that, when AU(1 —
F(w), 0, w) is strictly increasing, there is a unique equilibrium since only three things
can happen. First, if AU(0,0,w) < 0 then AU(1—F(w),0,w) < 0 for all w < @ and
the unique equilibrium involves a* = 0 by Proposition 1. Second, if AU(1,6,w) > 0
then AU(1 — F(w),0,w) > 0 for all w > w and the unique equilibrium involves

26



a* = 1. Finally, if none of the above conditions are satisfied then there exists a
unique solution w* to AU (1 — F(w*), 0, w*) = 0. To complete the argument consider
the case in which AU(1 — F(w), 0, w) = 0 is constant in some interval of returns for
some 6, leading to a continuum of equilibria. However, since AU (1 — F(w), 0, w) is
increasing in 6 there are at most a countable number of such intervals, and thus the
set of § at which there exists multiple equilibria has Lebesgue measure zero.

Now consider the “if” part. I first focus on the case that v’ € (w,w). If AU(1 —
F(w),0,w) is strictly decreasing in w at (¢, w’) such that AU (1 — F(w’), 8, w’) = 0,
then the continuity of U implies that there exists a nondegenerate interval [6;, 0]
containing ¢’ for which the following is true. For any 6 € [6, 0], (a) there exists
w* such that AU(1 — F(w*),0,w*) = 0; (b) either there is w > w* such that
AU(1 — F(w),0,w) =0 or AU(1 — F(w),0,w) < 0 for all w > w*; and (c) either
there is w < w* such that AU(1 — F(w),0,w) = 0 or AU(1 — F(w),0,w) > 0 for all
w < w*. Fact (a) implies there is always an equilibrium with a* = 1 — F(w*). Fact
(b) implies that there is at least another equilibrium with either a = 1 — F/(w) or
a = 0. Fact (c) involves at least a third equilibrium with a =1 — F(@) or a = 1.

Finally, if w' = w then (a) and (b) apply so there are at least two equilibria,

while if w’ = w then (a) and (c) apply and there are at least two equilibria. O

A.2 Proofs of Results in Section 4

Proof of Proposition 3. The proof logic is as follows. First, I argue that, given any
v > 0 the set of equilibrium strategy profiles has a largest and a smallest element,
each involving monotone (cutoff) strategies. Second, I show that there is at most one
equilibrium in monotone strategies, up to differences in behavior at cutoff signals,
so the least and largest equilibria are essentially the same.

Consider the game in which we fix the profile s of signal realizations and agents
choose actions in {0,1} after observing their own signals. Given Assumption 1
the game satisfies the conditions of Theorem 5 in Milgrom and Roberts (1990).
Accordingly, it has a smallest equilibrium a(s) and a largest equilibrium and a(s)
such that any equilibrium profile a(s) satisfies a(s) < a(s) < af(s).

In addition, if we fix the actions of all agents, an agent’s difference in expected
payoff from choosing 0 versus 1 is increasing in s since the average action is kept

fixed while 6 is higher (in expectation) at higher signal profiles. That is, expected
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payoffs exhibit increasing differences w.r.t. a; and s, and Theorem 6 in Milgrom
and Roberts (1990) applies: a(s) and a(s) are nondecreasing functions of s. But,
because an agent’s strategy can only depend on her own signal, her strategy must
be monotone on her own signal, i.e., she must be following a cutoff strategy.

To show that there is at most one equilibrium in monotone strategies, I establish
the following translation result: When all cutoffs are shifted by the same amount ¢,
an agent’s expectation of payoff differences AU conditional on receiving her cutoff
signal strictly increases. Let k40 denote a cutoff function shifted by ¢ for all w, while
k and k represent the cutoffs associated with the smallest and largest equilibrium,

respectively. [I omit the cutoff dependence on v to ease notation. |

Lemma 5. There exists v > 0 such that, if v < v and k is a profile of equilibrium
cutoffs, then E[AU(a,0,w)|k; k(w)] < E[AU(a, 8, w)|k + 0; k(w) + 8] for all § > 0
and all w € [w,w] such that k(w) + & < k(w).

Proof. First, note that equilibrium cutoffs must lie between § — /2 and 6 + v/2.
This is because in equilibrium an agent is indifferent between both actions when she
receives her signal cutoff. That is, E[AU(a, 8, w)|k; s] must be zero when s = k(w).
Since AU(a,f,w) < 0 for all # < 6 by Assumption 1 and § > s — v/2 it must be
that E[AU(a,0,w)|k;s] < 0 for all s < § — v/2. A symmetric argument applies to
signals above  + /2.

Given this, for all v < 7 := min{# —inf ©, sup © — 0}, the density of § conditional
on signal s € [0 — v/2,0 + v/2] is h, (=2) . Also notice that an agent of type w
chooses a; = 0 if she receives a signal s < k(w), and thus the fraction of type-w

agents choosing action 1 is given by 1 — H,, (W) . Hence, we can obtain the
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following inequality using the change of variable 6/ = 6 + ¢:
E[AU(a,8,w)|k; k(w)] =

k(w)+v/2 _
/ AU < Hw/ (k ) Flw '),e,w) By <W) a9
k(w)—v/2 v
(w)+v/2 _
/ AU(l—/Hw/<k ) Flw )9+5w)h (W>d9
k(w)—v/2 w’ 14
w)+5+1//2 / _ _p
/ (1_/ i, (k(w)+(5 9>dp(w'),0’,w> h (k(w)+5 Q)dG’
k(w)+0—v/2 w’ v 14

= E[AU(a,0,w)|k + 6; k(w) + §]. O

I finish the proof by arguing that k(w) = k(w) for all w. Assume, by way of
contradiction, that k(w) < k(w) for some w. Denote w = arg max,,(k(w) — k(w))
the type with the biggest difference in signal cutoffs between the largest and the
smallest equilibria. Also, let § = k(i) — k(). By Lemma 5, we have that

0 = E[AU(a, 8, w)|k; k()] < E[AU(a, 0, w)|k+6; k(d)] < E[AU(a, 0, w)|k; k()] = 0,

where the last inequality comes from the fact that a is higher at at k than at k40 > k,
so the expected payoff difference of 1 conditional on x = k(w) is higher. O

A.3 Proofs of Results in Subsection 5.2

Proof of Lemma 1. If @ € (w, @) is not a NE then AU(1 — F(w),6,w) # 0 by
Proposition 1. Given the continuity of AU (1—F (1), 0, 1) we can increase or decrease
w so that the objective function in (10) goes up. If @ = w then it must be that
AU(1,0,%) < 0 so increasing @ increases the value of the objective function. A
symmetric argument applies to the case w = w.

Condition (ii) directly follows from the change of variable a = 1 — F(w). Con-
dition (iii) follows from the fact that the difference in the value of the objective
function (10) between NE w* and w* is given by (12). Hence, if this difference is
positive for all alternative NE in W*(#) then w* must be ex ante RD. We obtain
(iv) by substituting AU(1 — F(w),0,w) = u(l — F(w),6) + v(f,w) into (12) and
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applying a change of variable a = 1 — F(w) to fw* u(l — F(w),0)dF(w). O

w*

Proof of Proposition 4. 1 first prove existence. W*(6) is non-empty since the game
is supermodular so it must have a least and largest NE, both in pure strategies
(Milgrom and Roberts, 1990). W*(0) is also compact given that the set of player
types is bounded and that the limit of any convergent sequence of types in W*(0)
must also be the marginal type of a NE, i.e., must belong to W*(6). The latter is
due to the continuity of payoffs, which implies that the sequence of payoff differences
associated with the sequence of types also converges and thus condition (4) must
be satisfied by the limit type. By Lemma 1, finding the ex ante RD equilibrium
involves finding the marginal type w* € W*(#) that solves (10). Since the objective
function is continuous and W*(#) is non-empty and compact, by the extreme value
theorem the set of maximizers is non-empty, that is, an ex ante RD exists.

[ next prove that the ex ante RD is essentially unique. I do so by showing that, if
there are more than one ex ante RD equilibria at some 6, then there exist #’ < 6 and
0" > 0 such that there is only one ex ante RD equilibrium for parameters in (6',60) U
(0,6"). Since © can only be partitioned in a countable number of non-degenerate
intervals then the set of 6 at which there are multiple ex ante RD equilibria must
be countable, i.e., must have Lebesgue measure zero.

First, note that a NE w* such that AU(1 — F(w*),0,w*) = 0 with AU(1 —
F(w),0,w) strictly decreasing in w at w* cannot be ex ante RD. The reason is that,
by the continuity of AU w.r.t. w and Proposition 1, there must be another NE w*
such that, either w* < w* and U(1 — F(w),8,w) > 0 for all w € (w*,w*), or w* >
w* and U(1 — F(w),0,w) < 0 for all w € (w*,w*). Hence, w* violates condition
(iii) in Lemma 1.'* Accordingly, there are only three candidates for ex ante RD
equilibria: (a) NE w* with AU(1 — F(w*),8,w*) = 0 such that AU(1 — F(w), 6, w)
is increasing at w*; (b) w with AU(1,6,w) > 0; and (c) @ with AU(0,6,w) < 0.

Second, note that if there exist two (or more) maximizers of (10) for a given 0,

o . ees . . . . . . /
condition (iii) in Lemma 1 implies that, for any pair of maximizers w* and w*,

*/

/ COAT( = F(w), 0, w)dF(w) = 0, (23)

w*

12This is illustrated in Figure 2, where switching from w3 to either w} or w} increases the value
of the objective function by the size of areas A and B, respectively.
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otherwise one of them would yield a higher value of the objective function in (10).
Civen this, consider an infinitesimal increase in . Since AU(1—F(w), 8, w) is strictly
increasing in 6, the integrand in (23) goes up as 6 increases. In addition, both
integration limits (weakly) go down. But this means that if w* < w* and both
limits change continuously with 6, the LHS of (23) strictly increases. The reason
is that, given that w* is ex ante RD, either AU(1 — F(w),6,w) is equal to zero
and increasing at w* or w* = w and AU(LQ,@) > 0. Hence, the integrand must
be positive for values of w just above w*. Similarly, AU(1 — F(w), 6, w) is equal to
zero and increasing at w* or w* = @ and AU(0,6,w) < 0 so the integrand must
be negative for values just below w*". Figure 4 illustrates the increase in the LHS,
represented by the shaded area, associated with an increase in 6 in the context of
Example 1. Similarly, an infinitesimal drop in 6 leads to a drop in the LHS of (23).

Accordingly, there is only one ex ante RD equilibrium in an open neighborhood

0.08 +
0.06 +
0.04 +

0.02 +

Figure 4: Effect of an increase in 6

(0',6) U (6,0”). Finally, notice that, by the continuity of AU, the only way one of
the integration limits might not change continuously is because one of them ceases

to be a NE and thus only one of them can be ex ante RD. O

Proof of Proposition 5 and Corollary 1. The function wgp is well-defined since an
ex ante RD equilibrium exists for all 8 € © by Proposition 4.

I next argue that wgp is decreasing. From the proof of Proposition 4 we know
that AU(1 — F(w), 0, w) is increasing in w at an ex ante RD equilibrium w¥, that

satisfies AU(1—F(wkp), 0, whp) = 0. Given this, consider two cases, when there is a
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unique ex ante RD equilibrium and when there are two or more. If there is a unique
ex ante RD equilibrium w;, with AU(1—F (wkp), 6, wip) = 0 then a small increase
in 6 leads to an increase in AU(1 — F(wkp,), 0, whp). Since AU(1 — F(w),0,w) is
increasing in w then wgp must go down to satisfy the NE conditions in Proposition 1.
If AU(1 — F(wkp), 0, whp) # 0 then it must be that wk,, € {w,w}. In such a case,
a small increase in 6 does not affect wi,, since both AU(1 — F(wkp), 0, whp) and
the objective function in the maximization problem (10) are continuous in 6.

Next consider the case in which there are multiple ex ante RD equilibria at 6.
The proof of Proposition 4 shows that this can only happen in isolated points of ©.
Moreover, I argue in that proof that these equilibria satisfy (23), whose left hand
side is strictly increasing in 6. Accordingly, since wgp selects the lowest of them
by definition, an infinitesimal increase in # must lead to a drop in the ex ante RD
from the highest to the lowest ex ante RD marginal type at 6. This also proves that
wgrp is right-continuous, and that there is a countable collection 6; < 6, < --- < 6,
satisfying properties 1 and 2 in the proposition.

Property 3 is a consequence of wgp being decreasing: if (17) holds then w is an
ex ante RD equilibrium. Since it is the lowest one, wgp must select it by definition.

Property 4 states that w is selected by wgrp whenever it is the unique ex ante
RD. This happens either because it is the unique NE, i.e., AU(1 — F(w),0,w) <0
for all w < w, or because the other NE lead to a lower value of the objective function
in the maximization problem (10), i.e., when (18) is satisfied.

Corollary 1 directly follows from conditions (13) and (16). O

Proof of Corollary 2. Tt is straightforward to verify from the argument in the proof
of the “if” part in Proposition 2 that if AU(1 — F(w),,w) is decreasing or strictly
quasiconcave in w then there is a non-degenerate interval of # such that there are
exactly three equilibria, with one of them having a marginal type w* such that
AU(1— F(w), 6, w) is equal to zero and decreasing at w*. The proof of Proposition 4
shows that the latter cannot be ex ante RD, implying that only the lowest and the
highest adoption equilibria of the three can be ex ante RD. Finally, the no adoption
equilibrium is the unique NE at # < @ while the full adoption is the unique one for
0 > 0. Hence, since AU(1 — F(w), 0, w) is increasing and continuous in # there must
be a unique switch from the low adoption to the high adoption equilibrium, leading

to a single discontinuity in wgp. O
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A.4 Proofs of Results in Subsection 5.3

Proof of Proposition 6. First note that the class of coordination games I study be-
longs to the family of aggregative games studied by Serrano-Padial (2020) (hence-
forth SP). It is straightforward to check that these coordination games also satisfy
SP’s Assumptions 1 and 2 and thus uniqueness and monotonicity of equilibrium
in the global game directly follows from Proposition 4. Moreover, equilibrium uni-
formly converges to a limit equilibrium as v — 0 by Proposition 5 in SP.

To finish the proof note that separable payoffs are quasilinear payoffs (see Def-
inition 1 in SP) so the game is a potential game by Proposition 1 in SP. Hence,
the ex-ante RD equilibrium coincides with the potential maximizing equilibrium by
Propositions 2 and 3 in SP. Finally, SP’s Theorem 1 establishes the equivalence

between potential maximization and the global games selection for almost all 8. [

Proof of Lemma 2. (adapted from Drozd and Serrano-Padial (2018) and Sakovics
and Steiner, 2012)!3

I prove Lemma 2 through a series of steps. Fix a cutoff function x mapping types
to signals in [inf © 4+ v/2,sup © — v/2|, and a measurable subset of types W'

First, I define “virtual signals” § = s — k(w) for all w € W', which exhibit a
common default threshold £ = 0. Also define the ‘extended type’ of a player as the
signal-type tuple (s, w).

Second, I show that the uniform prior assumption implies that the density asso-
ciated with signal s = k(w) for a player of type (s, w), conditional on § = 0 and on
w € W', is given by the conditional density of types w in subset W’ i.e.,

Pris(w), wls = 0, W) = 1) (24)

N Jor f(w)dw’

where Pr(s,w|-) denotes the conditional probability density of extended type (s, w).
Third, I show that the average action of types in subset W’ denoted by a(6, W),

is uniformly distributed in [0, 1] conditional on § = 0. That is,

Pr(a(,W') < z|§ =0,W') = z. (25)

131t adapts Lemma 7 in Drozd and Serrano-Padial (2018) to a continuous type distribution.
Their result generalizes the belief constraint in Sakovics and Steiner (2012) to any subset of types.
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Equipped with (24) and (25), we obtain the belief constraint (?7):

z = Pr(a(0,W') < 2|5 =0,W"
— / ,pr (a(0, W') < z|s = k(w), W) Pr(s = s(w)|5 = 0, W)dw

1

~ fy F(w)dw /W Pr(a(6, W) < z[s = w(w), W) f(w)dw,

where Pr (a(6, W) < z|s = r(w), W’) represents the belief A,,(z[x; W’) of type w.

I prove (24) by pinning down the marginal distributions of (s, w) and 3. Given the
above restriction on cutoffs , I focus only on signals s € [inf © +v/2,sup© — v/2].
Recall that @ is uniformly distributed and independent of n and w. Accordingly, the

joint density of (s,w, @) is

Pr(s,w,0|W") = Pr(s|w,0, W) Pr(w|0, W )Pr(0|W') = Pr(s|w, 0) Pr(w|W") Pr(6)

= ()2 (5 o) (e re)

We obtain the marginal density of (s, w) by integrating the above expression:

s+v/2 s+v/2 N 1 f( ) X
s — w
Prisal) = [ priswspras = [0 (*50) B
v v |, f(w)dwsup ® — inf ©
s—u/2 /2 fW f( ) p
f(w) 1

B fw, f(w)dwsup©® — inf O

The marginal density of the virtual signal § = s — k(w) is given by

~ o P S
pr(szs+k(w)|W)—//PT(3+“(W)’M|W)dw_Sup@—inf@7

for all § such that § + k(w) € [inf © + v/2,sup O — v/2]. Since § = 0 satisfies this

condition given the above bounds on x(w), we have that

o Pre W)
Frift) wls =000 = By (= k) ) ~ T Fwjdw

34



To prove (25) first note that the virtual noise 77 = (§ — #) /v follows the mixture

distribution {Hw (f] + ”(w)) , — L) } . This implies that the virtual noise
v S fw)dw wew!

belongs to type w with probability fff%. In addition, its distribution conditional
w f(w)dw

on type w is given by the noise distribution evaluated at n = 7 + k(w)/v. But

note that the mixture distribution does not depend on 6 so the random variable
7 is i.i.d. across agents and independent of #. Let G be the cdf of 7 and define
G~1(z) = inf{7 : G(7}) = z}. Given the definition of virtual noise, the average action
in subset W' is given by the fraction of agents in W’ whose virtual signal is lower
than zero, i.e., by the cdf of the virtual noise G evaluated at —6/v. This yields

expression (25) given that

Pr(a(0,W') < 21§ =0,W') = Pr(G(—0/v) < 2| =0,W') = Pr(G(7) < 2)
=Pr(f <G (2) = GG (2) = = O

A.5 Proofs of Results in Section 6

Proof of Lemma 3. Consider an agent of type w with signal s = 0 + vn = k¥ (w).
The mass of agents with the same type choosing a; = 1 are those with signals
s > k¥(w), i.e., those with signal noise above 7. By the exact LLN such mass is given
by 1 — H,(n). Since the agent does not observe n and it is i.i.d. she deems H, (n)
as a random variable uniformly distributed in [0, 1]. Accordingly a,, = 1 — H,(n) ~
U|0, 1]. This proves the first part of the Lemma.

Next, consider the agent’s beliefs about the fraction of agents of a type w’ # w
choosing a; = 1. It is given by the agents of type w’ receiving signals s’ = 0 + vy’ >

k¥ (w'). Since 6 4+ vn = k¥(w) this condition can be expressed as follows
O+vy —(0+wvn) > k(W) —k'(w) =71 >n+ Ak(w,w').

By the exact LLN the mass of agents with signal noise satisfying this condition is
given by 1 — H,(n+ Ak(w,w’)). Let z denote the mass of agents of type w choosing
a = 1 when s = k(w). By the above argument z = 1 — H,(n) or n = H (1 — z).
Hence, a, = 1— H,(H,;'(1—2)+Ak(w,w')). To complete the proofs of parts 2 and
3 notice that types w’ < w have a weaker incentive to choose a; = 1 and thus their

threshold is higher and their average action is lower. Accordingly, no one adopts,
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ie., Hy(H, (1= 2)+ Ak(w,w')) =1 for all z satisfying H,'(1 — 2) + Ak(w,w’) =
H ;/1 (1) = %, which yields the expression of the average action in part 2. A symmetric

argument applies to the case of w’ > w. O

Proof of Lemma 4. The proof uses the characterization of individual beliefs about
the average action of a single type to construct the individual beliefs A,, of a type
about the average action in [w;,w;;1] as a function of own-type average action,
which is uniformly distributed by Lemma 3. Then, I apply this characterization to
the family of power noise distributions to show that A, (a|k, [w;, w;4+1]) differs across
noise distributions in a nondegenerate interval of z.

First, notice that, by Lemma 3, the belief about own-type average action is
independent of the noise distribution since it is the uniform distribution on the unit
interval. Accordingly, we can express the belief of type w about average action of
types in the interval [w;, w;41], conditional on s = k(w), as a function of z as follows

Wj+1
a(z, [wj, wjpq]) = / aw (2)dE;(w'"), z ~ U0,1], (26)
where Fj(w) := F(w|w € [w;,w;4+1]). To show that the conditional distribution of
the average action changes with the noise distribution, it suffices to find a pair of
noise distribution families for which a(z, [w;, w;41]) is different under H,, than under

H! in a non-degenerate interval of z. Using Lemma 3, we have that

ol lwganl) = [ aw()dn W)
wp(2)
_ / | (1— Ho(H;'(1 - 2) + Ak(w, w'))) dFy(w') + 1 — Fj(w(2))
wp (2)
=1-Fj(w(z)) — / . Hy(H ' (1—2) + Ak(w,w"))dF;(w") (27)

where w;(z) and wy(2) satisfy z = 1 — H, (3 — Ak(w,w)) and z = 1 — H,(—5 —

Ak(w,wy)), respectively. Since a(z, [w;, w;41]) is increasing in z we can differentiate
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the above expression to get

AR 051 () D (111 (1~ 2) 4 Sk () 2)
wp(2)
_ / . L H(HZ (1~ 2)+ Ak(w, w)))dE ()
dwp(2)

— Hy(H,' (1= 2) + Ak(w, wy(2))) fi(wa(2)) i

wp(2)
_ _/ d%Hw,(H;l(l 2) + Ak(w, w')dF;(w),
wi(2)

Next, consider the family of power distributions H,(n) = (n+ 1/2)* for all w, with

a > 0. Under these distributions we have that, for any w’ € [w;(2), wp(z)],
Hy (H Y (1= 2) + Ak(w,w')) = (1 — 2)Y* + Ak(w, w'))".

Hence, the above derivative becomes

d . wp(2) Cu o

a(Z, [Zgj)wj'f'l]) :/ (1 . Z)lT ((1 _ Z)l/a +A/€(w,w/)) ldFj(w/)~ (28)
< wy(2)

Finally, to show how a(z, [wj, w;;+1]) depends on H one can compare its derivative

for the case of a =1 to the case of a < 1, evaluated at at z = 1. In the former case

we have

da(z, [w;, wj1])
dz

wp(2)
s :/ dF(w') = Fj(wp (1)) — Fj(wi(1)).

wy(2)

The right hand side in this expression is strictly positive for any type in the interior
of [wj, wjiq] since 1 =1 — H,(1/2 — Ak(w,w;(0))) implies that Ak(w,w;(1)) = 1,
and 1 =1— H,(—1/2 — Ak(w,wp(1))) implies that Ak(w,wy(1)) = 0. Accordingly,
it must be that w;(1) < wp(1) given that Ak(w,w’) is strictly decreasing in w’ due
to the monotonicity of payoffs w.r.t. types.
In contrast, when o < 1, % = 0. Given the continuity of a(-, [w;, w;1]),
this implies that there exists an interval [z, 1] such that a(z, [w;, w;1]) is strictly

higher or strictly lower for all z € (z,1] under a = 1 than under o < 1.1 O

M1 (0, [wj,wj41]) is equal in both cases then it is strictly higher in the interval under o = 0
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Proof of Proposition 7. Proposition 6 implies that payoff separability leads to uni-
form selection given that the GG selection coincides with the ex ante RD equilibrium,
which does not depend on H,,. To show that uniform selection can fail under non-
separability I introduce an example with a two-type distribution and argue that the
selection is not uniform for any continuous F' arbitrarily close to it.
Consider payoffs U(0, a,0,w) = 1 and U(1,a,0,w) = 6 4+ 2wa + (1 — w)a?, which
lead to
AU(a,0,w) =0 — 1+ 2wa + (1 — w)a®. (29)

In addition, let F' place all the mass on {0, 1}, with F(0) = Prob(w = 0) = 1/2. It
is straightforward to check that for 6 € [0, 1] both a* = 0 and a* = 1 are NE, while
there is a third (non-stable) equilibrium in which only w = 1 adopt for 6 € [0, 3/4].
Hence, the GG selection involves both types using the same limit cutoff k.
For any noise level v > 0 let A = w > (. Next consider the individual
beliefs about the average action given by (26) under the family of power distribu-
1 z2<1-—A°
tions. For the low type w = 0, w;(2) = 0 for all z, while w,(z) = .
0 z>1-—- A«

Hence, her beliefs about the average action, denoted by a°(z), are

(1-(1=2)Y*=A)) z<1-A"
z>1—A>

a(z) =

" (30)
+

[SIRSE CTENY
= N

1 z2<1—(1—A)

Similarly, for the high type w = 1, wy(z) = 1 for all z, while w;(z) = :
0 z>1—(1-A)"

This leads to beliefs

z2<1—(1-A)"

a'(z) = FlI— (A=Y 1 A)P) 2>1—(1—A)

(31)

(NS ESEN I N

Since s — # as v — 0, the indifference conditions pinning down k are

1
0:/ AU (a"(2),k,w)dz, w=0,1.
0

since the derivative is strictly positive. If a(0, [w;,w;1]) differs across a then such an interval
exists given the continuity of a(-, [w;, wj41]).
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Accordingly, k and A solve the following system of two equations

0—k—1+/1_M f+1(1—((1— )W—A)a) " +/1 = 1),
- ; 273 : W \2T2)

1-(1-8)" 1 5 1
—k—1+2 “dy +2 S (1= (1 =Y+ A ) de.
0 + /0 5dz + /1(1A)a (2+2( (1=2)">+ ))> 2

To show that the GG selection is not uniform I solve these conditions for two different
values of «, namely, & = 1 (the uniform distribution) and o = 2 and show that &
differs across the two solutions.

When a = 1 indifference conditions are

1-A A 2 1 P 1 2
O:k:—l—l—/ <z+—) dz+/ (——I——) dz,
! 2 272
A 1
O=k—1+2/ zdz+2/ (z—é)dz,
0 2 A 2

These conditions yield the system of equations

k:%- (1= AJ2)A, k= (1—A/2A,

N | —

leading to k = g and A = %

Indifference conditions for the case of o = 2 are

1! 1 A 4
O:k—1+—/(z+1)2dz+—/ (1—2)"2—A) dz
4 Jo 4 Jo

—%/O (z+1) ((1—2)1/2—A)2dz,

1 1
0zk—1+/zdz+/ (1= (1= 2"+ 2)") dz,
0 1-(1-A)2
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which can be expressed as

1-A2
0:1@—15—2+/0 E ((1—2)1/2—A)4—%(2+1) (1—2)"2 = A)?| dz, (32)

1 1
O:k——+(1—A)2—/ (1— 2+ A) d=. (33)
2 1—(1-A)2

To solve the integral in (32) we do a change of variable t = (1 — 2)/2 — A (implying
that dz = —2(t + A)dt), which leads to

0=Fk— % + /OI_A Bt“(t +A) = (2—(t+ A+ A)] dt

5 1=A T35 7AH
:k;——+/ — + + 3A%3 — 213 + A32 — 2A2| dt.
12/, 2 2

1/2

Similarly, using a change of variable ¢t = (1 — 2)%* + A, we can express (33) as

1 1
0—k——+(1—A)2—2/ t2(t — A)dt.
2 A
Solving the integrals in the above expressions and rearranging, we obtain the fol-
lowing system of equations:
8 A 2.4 5., 1

2 4 1
= A AT A% k= A - AP CAY
3 1573 2> T3t 3 "%

The solution for a = 2 involves a slightly higher cutoff than under a@ = 1, given by
k = 0.447 > 0.444 ~ 4/9 (the relative difference in cutoffs is A = 0.552).

Finally, consider any continuous distribution F' over types with full support in
[0, 1] that places a mass of 1/2 — ¢ in a small neighborhood of w = 0 and a similar
mass in a neighborhood of w = 1, for arbitrarily small € > 0. Since AU is Lipschitz
continuous in all its arguments the solution to the system of indifference conditions
under F' is going to be in a small neighborhood of the solution under two-types.
Accordingly, the solutions under this continuous F' are going to be different across

the two noise distributions. O
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