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Abstract

Individuals likely face uncertainty about underlying risks in insurance and
financial markets. To characterize demand for financial products, it is therefore
necessary to understand preferences toward both known and uncertain risks. We
survey a representative sample of US households to estimate such preferences. We
observe three main patterns and show that they can be modeled by incorporating
probability weighing in both risk and uncertainty domains: 1) individuals exhibit
uncertainty aversion, 2) individuals switch from risk averse to risk loving as risks
become more likely and 3) risk and uncertainty aversion are negatively correlated.
We find that probability weighting is much more heterogeneous in the risk domain
than in the uncertainty domain. While individuals overweigh small probabilities
and underweigh large probabilities across domains, probability distortion is lower
among individuals with higher financial literacy and cognitive ability. We suggest
how to account for unobserved uncertainty when estimating risk preferences from
observational data.
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1 Introduction

Understanding the nature of individual preferences is key to conducting economic anal-
ysis of markets in which agents face risks, such as insurance and financial markets. One
way to understand the nature of preferences is to use observational data on decision-
making and recover preferences under certain assumptions. A growing literature does
this using insurance decisions in observational data.! This literature characterizes risk
attitudes under the assumption that agents have full information about the risks they
face. One of the main takeaways of this literature is the need to incorporate probability
weighting over risks in preference estimation (Barseghyan, Molinari, O’Donoghue and
Teitelbaum, 2013).

However, it is likely that consumers do not have full information about their un-
derlying risks and instead are uncertain about the risks that they face. For example,
consumers may perceive the probability of suffering a loss to be between between 5
and 15% rather than exactly 10%. This uncertainty could also come in the form of
difficulty reducing compound risks - e.g., having trouble assessing overall risk when the
risk of damage to a roof is a combination of the risk of hail and the risk of a poorly
built roof. Recent evidence shows that indeed economic agents often perceive risks in
terms of probability ranges (Bachmann et al., 2020) and that consumers exhibit aver-
sion to ambiguous and compound risks.? This suggests that whether risks are known
or uncertain is a determinant of insurance demand.

Therefore, to fully characterize preferences in financial markets, it is important
to consider preferences over both known risks and uncertain risks. However, it is
not possible to estimate preferences in both the risk and uncertainty domains with
observational data alone. As noted by Stantcheva (2022), a solution in this situation is
to conduct surveys to uncover preferences. We therefore survey a representative sample
of over 4,000 households in the United States. We elicit respondents’ willingness to pay
(WTP) for insurance against a loss in three scenarios: known (simple) risks, compound
risks and ambiguous risks in the form of probability ranges.

This paper makes two main contributions. First, we theoretically show the need to
incorporate probability weighting in both the risk and uncertainty domain to explain
the empirical patterns in the data. These patterns involve 1) agents switching from

risk aversion to risk loving as risks become more likely, 2) being uncertainty averse on

1See Barseghyan et al. (2016) for a review of existing work.

2The evidence of ambiguity aversion and compound lotteries is extensive. See for instance the
evidence of aversion to ambiguous risks (Cohen et al., 1987; Einhorn and Hogarth, 1986; Di Mauro and
Malffioletti, 2004; Chapman et al., 2020) and the review on higher order risk attitudes by Trautmann
and van de Kuilen (2018).



average and 3) exhibiting a negative relation between risk and uncertainty aversion.
We also find that agents’ reaction to the introduction of uncertainty is much more
homogeneous than their risk attitudes. Second, we estimate the joint distribution of
risk and uncertainty preferences in the population and examine the degree and sources
of preference heterogeneity. In a companion paper, we report on the three above-
mentioned results and evaluate the welfare implications thereof, but do not provide
the theory or estimate preferences as we do here (Gandhi et al., 2022).

Preference models that are linear in probabilities cannot satisfactorily explain the
switch from risk averse to risk loving exhibited by a majority of survey respondents.
In contrast, rank-dependent utility exhibiting overweighting (resp. underweighting) of
small (large) probabilities can produce this switch. However, rank-dependent utility is,
by definition, restricted to deal with known risks so it cannot explain our results when
uncertainty about risks are introduced. A way to overcome this limitation is to model
uncertain risks as two-stage risks and extend probability-weighting preferences to this
domain. According to this approach, the second stage represents known risks, given
by probabilities over final outcomes, while the first stage captures uncertainty via a
probability distribution over known risks. Segal (1987) introduced a recursive version
of rank-dependent utility that applies the same probability weighting function to both
first- and second-stage distributions. We propose a generalization of these preferences,
which we call second-order anticipated utility, that features two probability weighting
functions, one for risk probabilities and another for the uncertainty distribution of
risk probabilities. Allowing for different weighting functions is needed to generate the
observed differences in heterogeneity across the risk and uncertainty domains. We
theoretically identify conditions for such preferences to be consistent with the patterns
in our data. To do so, we look at the change in WTP for insurance caused by the
introduction of a small degree of uncertainty about risk probabilities. We call this
change in WTP the marginal uncertainty premium and characterize it for second-order
anticipated utility. It is given by the average probability weight in the uncertainty
domain and the slope (or sensitivity) of the weighting function in the risk domain. We
show that an individual is uncertainty averse, defined as having a positive marginal
uncertainty premium, if on average she weighs distributions over risk probabilities
more than an expected utility maximizer. We also prove that a negative correlation
between the marginal uncertainty premium and the risk premium arises if higher risk
aversion is associated with a lower sensitivity to changes in risk probabilities. We
empirically confirm this association by estimating at the individual level the slope of

the second stage weighting function. We find that agents with flatter slopes exhibit



significantly higher risk premia. Intuitively, risk averse individuals are willing to pay
a generous premium for insurance to avoid being exposed to a loss, regardless of the
exact probability of its occurrence, thus exhibiting a lower sensitivity to changes in this
probability.

To the best of our knowledge, this paper presents the first estimate of the joint
distribution of risk and uncertainty preferences using a representative sample of the
US population. To obtain these estimates, we adopt a Bayesian hierarchical model in
which WTP for insurance is determined by second-order anticipated utility preferences.
The hierarchical structure of the model assumes that individual-level preference param-
eters are drawn from population-level distributions. Our Bayesian approach yields an
estimate of the full distribution of preference parameters at the individual level, en-
abling us to pin down the relative contribution of probability weighting in the risk and
uncertainty domains to preference heterogeneity and their relationship with sociode-
mographic characteristics. We find that individuals’ attitudes toward uncertainty are
much more homogeneous than their risk attitudes, and that preference heterogeneity
is largely driven by wide heterogeneity in the probability weighting of known risks.
Further, the majority of individuals overweight low to moderate probabilities, regard-
less of whether such probabilities correspond to known or uncertain risks. In terms
of sociodemographic differences, we find that individuals with higher financial literacy
and cognitive ability exhibit lower probability distortions.

Our preference estimation yields three main takeaways. First, the relatively homo-
geneous response to uncertainty suggests that policies aimed at improving information
about underlying risks in insurance markets may be beneficial for most consumers,
regardless of their risk attitudes and sociodemographic background. Second, the link
between financial literacy and probability weighting suggests that less sophisticated
agents might be over-represented in insurance markets. We explore these welfare im-
plications in a companion paper (Gandhi et al., 2022). Finally, from a methodological
perspective, our results highlight the need to control for uncertainty in the estima-
tion of risk preferences. In this context, we show how we can exploit the functional
form of the marginal uncertainty premium to correct for the presence of unobserved
uncertainty in observational data.

In what follows, Section 2 provides a discussion of our contribution to related work.
Section 3 summarizes the survey design. Section 4 summarizes the empirical patterns
reported in Gandhi et al. (2022). Section 5 identifies preferences that account for the
empirical patterns. We estimate the distribution of uncertainty preferences in Section 6.

Section 7 concludes.



2 Related Literature

This paper contributes to the literature on the estimation of preferences that uses
insurance take-up and claims data by studying the impact of uncertainty. Most exist-
ing work focuses on estimating risk preferences under the assumption that consumers
know their distribution of underlying risks (Sydnor, 2010; Barseghyan et al., 2011, 2013;
Einav et al., 2012), or the assumption that preferences are unrelated to information
frictions (Handel and Kolstad, 2015; Handel et al., 2019). In this context, our paper
brings insights from experimental economics work on ambiguity aversion to the empir-
ical insurance literature by providing a methodology to estimate the joint distribution
of risk and uncertainty preferences and applying it to the US population. A related
paper is the analysis of ambiguity attitudes with lotteries on a representative sample
by Dimmock et al. (2016).

Regarding the theoretical literature on uncertainty preferences, the majority of
models reduce to expected utility when risks are known. Two notable exceptions ex-
hibiting probability weighting of known risks are recursive anticipated utility (Segal,
1987) and the model of Dean and Ortoleva (2017). We build on the work of Segal
(1987) by proposing a variant of recursive anticipated utility that allows for proba-
bility weighting functions to differ across risk and uncertainty domains. This class of
preferences are well-suited for empirical work, since they allow for both under- and
over-weighting of probabilities, which we show is necessary to explain the data, and
can be tractably estimated using flexible functional forms.

From a modeling perspective, our results extend to the uncertainty domain the
insights from Barseghyan, Molinari, O'Donoghue and Teitelbaum (2013), who show
the need for probability weighting on the estimation of risk preferences. We also show
how to partially estimate uncertainty preferences even with limited data, as is typically
the case in the field. Finally, our estimation approach highlights the advantages of
generating distributional estimates of individual preferences, since they provide a more
comprehensive picture of key determinants of insurance demand. Our companion paper
explores the welfare implications of uncertainty in insurance markets, but does not

model preferences theoretically (Gandhi et al., 2022).

3 Data

Our data includes a survey of 4,442 US households who are part of the Understand-
ing America Study (UAS) at the University of Southern California. The UAS is a



representative panel of households who regularly complete surveys online. We merged
our survey data with rich sociodemographic information and measures of cognitive
ability and financial literacy available on UAS panel members.? Appendix A provides
summary statistics of the respondents.

Participants made a series of 10 decisions. In each decision, participants were told
they were the owner of a machine, which had some probability p of being damaged. An
undamaged machine paid out 100 virtual dollars (equivalent to 5 USD), while damaged
machines paid out nothing. In each decision, participants indicated their maximum
WTP to fully insure the machine. The actual price of insurance was drawn at random
from a uniform distribution on (0, 100), and participants acquired the insurance if their
WTP was above the drawn price and not otherwise.*

Participants faced two different environments, known risks and uncertain risks, each
involving a block of 5 decisions. One decision from each environment was randomly
selected to be paid out at the end of the survey. In the known risks environment,
participants were informed of the value of risk probability p in each decision. In the
uncertain risks environment, the risk probability was drawn from the uniform distri-
bution Ulp — e, p+ €], with € € (0, min{p, 1 — p}]. Individuals were either told that the
risk probability belonged to the range [p — &, p + €] or that all values in [p — &, p + €]
were equally likely. The former case represents ambiguous risks, since agents do not
observe the distribution of p, while the latter case corresponds to compound risks that
reduce to p.

We divided participants into four groups. Each group received the set of risk proba-
bilities and probability ranges described in Table 1. To isolate the effect of uncertainty
on individual demand for insurance, the probability ranges faced by a participant were
centered around the values of p associated with her decisions under known risks. The
order of blocks was randomized, but the order of probabilities within each block was
kept constant and was ordered from smallest to largest. Half of participants received
ambiguous risks and half received compound risks. This design feature allowed us
to check for potential differences in attitudes towards two common sources of uncer-
tainty in insurance markets, the perception of risks as the realization of a series of bad
shocks and the lack of precise information about the distribution of shocks, respec-

tively. Overall, p varied between 2% and 90%, while range sizes (2¢) varied from 2%

35,674 UAS panel members ages 30 and over were recruited to complete the survey online, and
4,534 respondents accessed and completed the survey. 62 respondents started but did not complete
the survey and are excluded from our analysis.

4This approach is also called the Becker-DeGroot-Marschak mechanism (Becker et al., 1964) and
is commonly used in similar studies, e.g., Halevy (2007).



to 24%. Appendix F contains the survey instructions.

Group Decision Known Risk Uncertain Risk
(within block) Probability (%) Range (%) Size (%)
1 5 3-7 4
2 10 1-19 18
1 3 20 13-27 14
4 50 46-54 8
5 80 68-92 24
1 5 1-9 8
2 10 3-17 14
2 3 20 18-22 4
4 40 28-52 24
5 70 61-79 18
1 2 1-3 2
2 10 6-14 8
3 3 20 8-32 24
4 40 38-42 4
5 90 83-97 14
1 2 0-4 4
2 10 8-12 4
4 3 20 16-24 8
4 30 21-39 18
5 60 48-72 24

Notes: Respondents were assigned to one of four groups, and were presented both the probabilities described
in (1) and (2) in the order displayed here. Half of respondents were told that each probability in the range is
equally likely, while half were not given information about the probability distribution within a range.

Table 1: Summary of Decisions Presented to Respondents

4 Empirical Patterns

This section summarizes the main empirical patterns of insurance choices under un-
certainty documented in Gandhi et al. (2022). Gandhi et al. (2022) illustrate the
magnitude of risk and uncertainty premia and estimate their correlation structure,
correcting for potential bias due to measurement error. We report underlying risk
probability p, WTP, as well as risk and uncertainty premia in percentages. Note that
since the magnitude of the potential loss is 100 virtual dollars, the actuarially fair price
of insurance against known risk p € (0, 100) is given by p.

We denote by W ([I) the WTP for insurance given information /. The risk premium
associated with known risk p is given by u(p) := W(p) — p. We define the uncertainty



premium associated with compound risk I = Ulp — ¢, p + €] or ambiguous risk [ =
[p—e,p+elas u(l) := W(I)—W (p). Accordingly, WTP for insurance against unknown
risk I can be decomposed as the sum of the actuarially fair price of insurance, the risk

premium and the uncertainty premium: W(I) = p+ u(p) + p(1l).

Fact 1: Risk premium decreasing in p. Figure 1 displays the average risk pre-
mium at each p, both for the overall sample and by household income. The 0 line
represents risk neutrality. Average risk aversion decreases as losses become more likely,
suggesting that agents transition from exhibiting significant risk aversion at small p to
becoming risk loving at very high p. Individual regressions show that for about 76%
of agents risk premium is decreasing in risk probability, with 47% predicted to switch
from risk aversion to risk loving as p increases. Interestingly, although individuals with
higher incomes tend to display smaller risk premia than individuals with lower incomes,
the switch from a positive to a negative risk premium seems to be around p = 0.6 for

most income levels.
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Figure 1: Average Risk Premium at Different Probabilities (bars represent 95% confidence intervals).

Fact 2: Positive uncertainty premium at low and moderate p. Figure 2
presents the average uncertainty premium at each possible p.° Data points are labeled
with the size of the range of probabilities associated with them, given by 2. On average,
agents exhibit large uncertainty premia at p < 50%, which are higher at big ranges than
at small ranges. These lead to an increase in WTP as high as 100% of the expected
loss for big ranges. The uncertainty premium decreases with risk probability p, which
is consistent with the findings by Hogarth and Kunreuther (1989) and Abdellaoui et

SGandhi et al. (2022) do not find systematic differences in average uncertainty premia across
compound and ambiguous risks so they pool the data for both types of uncertain risks.
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al. (2015) that aversion to compound and ambiguous lotteries increases as winning

probability goes up.
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Figure 2: Uncertainty Premium at Different Risk Probabilities (point labels represent range size and
bars represent 95% confidence intervals).

Fact 3: Negatively correlated risk and uncertainty premia. Figure 3 plots the
correlation coefficients for each p, showing that risk and uncertainty premia are nega-
tively correlated at all risk probabilities, with all coefficients significant at the 1% level.
Correlation coefficients are remarkably invariant to underlying risk p, consistently lie
between —0.24 and —0.35, and do not substantially change after controlling for individ-
ual characteristics such as cognitive ability, financial literacy, and sociodemographics
(partial correlations). Gandhi et al. (2022) show that the negative correlation is robust
to measurement error and is also present in experimental data from prominent stud-
ies on ambiguity and compound risk attitudes (Halevy, 2007; Abdellaoui et al., 2015;
Chew et al., 2017).
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Figure 3: Correlation Coefficients between Risk Premium and Uncertainty Premium.

5 Modeling Uncertainty Preferences

We next explore the ability of models of choice under uncertainty to explain the data.
We first propose a generalization of recursive anticipated utility (Segal, 1987), which we
call second-order anticipated utility (SOAU). In Subsection 5.1, we discuss the ability
of SOAU to explain our data. In particular, fitting the data requires two probability
weighing functions, one for risk probabilities and another for the distribution of risk
probabilities. This class of preferences is needed because, as we show in Subsection 5.2,
alternative models of ambiguity aversion cannot explain the data without resorting to

non-standard functional forms.

5.1 Second Order Anticipated Utility

The SOAU class of preferences that we introduce below can explain the data patterns
that we observe, namely, the switch from risk aversion to risk loving as p goes up, a
positive uncertainty premium decreasing in p, and a negative correlation between risk
and uncertainty premia. SOAU is a generalization of rank-dependent utility (Quiggin,
1982) to allow for ambiguity and compound risk attitudes.

The idea behind SOAU is to represent uncertain risks as a two-stage lottery and
to apply probability weights recursively. The second-stage lottery represents known
risks, in our case (p, —1; 1 —p, 0), where the size of the loss is normalized to be —1. The
first stage lottery is a probability distribution over p, e.g., U[p — &, p + €|, representing
the decision maker (DM) beliefs about p. SOAU evaluates uncertain risks by first



obtaining certainty equivalents of second-stage lotteries, and then using the distribution
over certainty equivalents induced by the first-stage lottery. In order to apply these
preferences to uncertain risks, it is assumed that the DM has a subjective probability
distribution over known risks.

More specifically, SOAU are characterized by probability-weighting functions
and utility functions u; at each stage £ = 1,2. Both m, and wu; are increasing with
7(0) = 0 and m(1) = 1.

Known risks (p, —1; 1 —p, 0) are evaluated by applying weighting function s to risk
probability p and by using uy to evaluate changes to final wealth.® Accordingly, the

DM’s valuation of p when her initial wealth is w is given by

V(p) = ma(p)uz(w — 1) + (1 — ma(p) Juz(w). (1)

The evaluation of uncertain risks given by probability distribution F'(p) over known
risks involves the evaluation of certainty equivalents using utility v and the application
of weighting function m; to the distribution of certainty equivalents induced by F.
Let y(p) be the certainty equivalent of risk p, and G(y) the distribution of certainty

equivalents. If G is continuous and has full support in [y, 7], the value of I is given by

V(D) =uly) + [ (o)1~ m(Gl)dy ®)

To isolate the effect of probability weighting, we consider the case of linear utility
ug(x) = x, k = 1,2. This implies that the certainty equivalent of risk p is —my(p) and
thus the risk premium is given by u(p) = mo(p) — p. Accordingly, a higher weight s (p)
represents a higher aversion to risk p.

Our goal is to characterize the uncertainty premium associated with uncertain risks
Ulp—e, p+e|, which correspond to compound risks or to ambiguous risks under uniform
beliefs. To do so we define the “marginal uncertainty premium” po(p) to be the limit of
the uncertainty premium, normalized by range size, as ¢ — 0. It captures the reaction
of the DM to the initial introduction of uncertainty and can be used to provide a linear
approximation of the uncertainty premium associated with uncertain risk 7(p, ).

The next proposition shows that the marginal uncertainty premium depends on the

slope of second stage weights and the average of first stage weights. The proof as well

6The weighting function is applied over the cdf of outcomes. Alternative formulations involve
applying weights 7% (2) = 1 — (1 — 2) to the decumulative distribution of outcomes. Following Segal
(1987), we use this formulation since it is more convenient when dealing with binary risks.
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as a characterization of the uncertainty premium for any value of ¢ is in Appendix B.

goes) (I(f <) denote the marginal uncertainty premium

at p. SOAU with linear utility implies that

Proposition 1. Let po(p) := lim._

po(p) = my(p)(2Em — 1), (3)
where Emy = fol m1(2)dz is the expected value of first-stage probability weights.

Expression (3) has an easy interpretation. In particular, po(p) is increasing in the
average first-stage weight 1, being positive whenever there is overweighting on average,
i.e., Fw; > 0.5. In addition, the more sensitive the risk premium is to changes in p,
i.e., the bigger the slope 7}, the larger the magnitude of yo(p). Intuitively, individuals
whose risk attitudes are insensitive to changes in risk probability exhibit little variation
in WTP for insurance across different p, and thus do not react strongly to the (initial)
introduction of uncertainty.

Equipped with the characterization of risk premium (u(p) = m(p) — p) and the
marginal uncertainty premium (ug(p) = wh(p)(2Em — 1)), we formally show that
SOAU can rationalize the above patterns in a natural way. The first result deals
with the behavior of the risk and uncertainty premia w.r.t. p and the second result
identifies conditions for the negative correlation between risk and uncertainty premia.
We omit the proofs of the next two propositions since they follow directly from the

characterization of the risk and marginal uncertainty premia.

Proposition 2. If preferences are given by SOAU with linear utility then the following

statements are true.

(1) If the DM overweighs small 2nd-stage probabilities and underweighs large ones,
i.e., there exist p* € (0,1) such that mo(p) > p if p < p* and ma(p) < p for p > p*,
then the DM is risk averse w.r.t. risk p < p* and risk loving for p > p*.

(i1) If the DM overweighs 1st-stage probabilities on average, i.e., Emy = fol m(z)dz >
0.5, then the marginal uncertainty premium po(p) is positive for all p € (0,1).

(ii) If the 2nd-stage weighting function becomes less sensitive as p goes up in [p,p),
i.e., Ty(p) is decreasing at all p € [p,p], then the marginal uncertainty premium

is decreasing in [p,p).

Overweighting-then-underweighting, overweighting on average and diminishing sen-

sitivity for non-extreme probabilities are typically satisfied by the inverted s-shape

11



functional forms commonly used in rank-dependent utility and prospect theory, such
as the Prelec weighting function (Prelec, 1998). In contrast, uncertainty preferences
that require concave weighting functions, as is the case with multiple-prior multiple-
weighting preferences proposed by (Dean and Ortoleva, 2017) cannot explain the switch
from risk aversion to risk loving.

The next proposition provides an intuitive condition that generates a negative cor-
relation between risk and uncertainty premia. It involves more risk averse individuals
being less sensitive to changes in risk than comparatively less risk averse individuals,
provided their average lst-stage weights are similar. This seems like a natural be-
havioral explanation: more risk averse individuals have a stronger incentive to avoid
risks and thus might be less sensitive to variation in underlying risks. Intuitively, they
may be overly cautious and willing to ‘overpay’ for insurance, regardless of whether

underlying risks turn out to be smaller or larger than expected.

Proposition 3. Consider two individuals i,j with preferences given by SOAU with
linear utility and weighting functions my, mj,, k = 1,2, such that Emy; < Emyj.

If individual i has a higher and flatter second-stage weighting function at risk prob-
ability p than individual j (i.e, moi(p) > ma;(p) and my(p) < mh;(p)), then i exhibits
a higher risk premium and a lower marginal uncertainty premium than j at p (i.e.,

1i(p) > i (p) and pioi(p) < poj(p))-

To test the predictions of Proposition 3 we estimate 75 and Em; at the individual
level using the following two-step approach. First, for each subject ¢ we estimate 75,

by regressing p on WTP for insurance against known risks:
mt:az+b1plt+ylt7 t:1775 (4)

Since W (p) = ma(p), b; is an estimate of ), (p). Second, we regress b; on the uncertainty

premium associated with unknown risks, normalized by range size:

‘6‘—; — abi + & (5)
Given that po(p) = 75(p)(2Em — 1), we can estimate Emy; using Emy; = Qtl Ta-
ble 2 presents the average estimates of 7l,(p) and E7y; in the population, as well as its
cross-sectional correlation with risk and uncertainty premia. The latter confirms the
hypothesis that risk averse agents tend to exhibit lower sensitivity to changes in under-
lying risk probabilities, inducing a negative correlation between risk and uncertainty

premia. Figure 4 shows that such negative correlation is mostly driven by individuals

12



with the lowest sensitivity. Specifically, respondents with 7}, estimates at the bottom
quintile of its distribution exhibit significantly higher risk premium and significantly

lower uncertainty premium than the rest of the respondents.

Regression Estimates

Estimate Average Std. error
(D) 0.61 0.59
Em 0.52 1.06
Correlation®
Risk premium Uncertainty premium
75h(p) -0.15* 0.12%*
Em -0.01 0.02**
No. Obs. 4,442

@ Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

Table 2: Components of uncertainty premium
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Figure 4: Average Risk and uncertainty premium at different estimates of 7.

5.2 Alternative Preference Models

We have shown that SOAU can rationalize the empirical patterns in a natural way.
The question is whether other uncertainty preferences such as existing models of am-
biguity aversion can explain the data. It turns out that, as we show in Appendix C,

the vast majority of ambiguity preferences proposed in the literature cannot explain

13



the switch from risk aversion to risk loving. The reason for such a failure is that most
models assume that the DM applies expected utility (EU) to evaluate known risks,
which has a hard time explaining a switch in risk attitudes as the risk probability
goes up. These EU-based preferences include a-maximin expected utility and vari-
ational preferences (Maccheroni et al., 2006), with maximin expected utility (Gilboa
and Schmeidler, 1989) and multiplier preferences (Hansen and Sargent, 2001) as special
cases, as well as smooth ambiguity preferences (Klibanoff et al., 2005) and uncertainty
averse preferences Cerreia-Vioglio et al. (2011). The same failure applies to uncertainty

preferences exhibiting reference-dependent utility or multiple utility functions.

6 Preference Estimation

We next estimate the distribution of uncertainty preferences in the population. We
focus on SOAU with linear utility for two reasons. First, it can account for the empirical
patterns of insurance demand. Second, it nests as special cases standard forms of risk
aversion (concave 7y) and risk loving (convex 7y) in the context of our data.

Our approach uses the decomposition of WTP into the sum of risk and uncer-
tainty premium, which under linear utility takes on the following form by Lemma 1 in

Appendix B:

W(I(p,e)) =p+ ulp)+ pn(l(p,e))

i+ [ [t eom (552) - (1-m (55) )] =

We impose a parametric form on 7, and estimate them at the individual level using

a hierarchical Bayesian model. Specifically, we assume that weighting functions in (6)

have a 2-parameter Prelec functional form:
ﬂ-k(p) = e_ﬁk(_ log<p>>aka g, ﬁk‘ > 07 k= 17 2. (7)

This functional form is commonly used in rank-dependent utility and allows for linear,
concave, convex, as well as s-shaped and inverted s-shaped weighting functions, as
illustrated by Figure 5. Lower values of (5 globally lead to higher weights m4(p), i.e.,
to comparatively higher risk aversion, while parameter «j mostly affects the shape

of m;, determining whether small probabilities are overweighed and large probabilities
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Shape of m, | ap | Bk

Linear 1 1
Concave 1 <1
Convex 1 > 1

Inverted S | <1 | any

S-shape > 1 | any

Figure 5: Prelec weighting function for different values of 8 (middle plot) and «y, (right plot).

underweighed (a < 1) or vice versa (a > 1).7

Let 6 = (ay, 81, a2, 52) be the parameter vector of Prelec weighting functions (7)
and let W (+; 6) denote the resulting WTP function given by (6). Our goal is to estimate
the distribution of 6 in the population. To do so, we assume that agent ¢’s observed
WTP for insurance against I;; = I(py,€;) is given by the random variable W;; whose
mean is determined by W (1l;;60;), where 6; represents the agent’s weighting function
parameters. Letting W;; to be random allows for the possibility of mistakes or for
random preferences. Notice that W (l;;6;) falls inside the interval (0, 1) for p € (0, 1).
However, a non-negligible subset of subjects sometimes report WTP of zero or one.®
Accordingly, we assume that W, follows a flexible zero-one inflated beta distribution,
which has two point masses, at 0 and 1, and follows a beta distribution on (0, 1) with

mean given by W (I;;6;). That is, W, follows mixture distribution

q(1 —q) w=0
f(W|[it>0i7Q7q17¢) = qq1 w=1 (8)

where ¢ = Pr(W; € {0,1}), ¢ = Pr(W;; = 1|W;;, € {0,1}), and ¢ is the precision
of the beta distribution. Unlike the weighting function parameter vector 6;, which is
allowed to vary across individuals, we set these three parameters at the population

level since we only have ten observations per individual.

"m crosses the diagonal once at p* = e for all a # 1. In addition, the slope of 7 (p) at

p = 0 is infinity for a < 1 and zero for oy > 1, whereas the opposite is true at p = 1. Accordingly,
a < 1 (resp. a > 1) implies overweighting (resp. underweighting) of probabilities in [0, p*].
8We exclude from the estimation 245 individuals reporting zero or one in all their choices.

15



We build a Bayesian hierarchical model by assuming that «a;, and (;; are drawn
from population-level distributions with support on the positive real line. Specifically,
we set the prior distribution of oy, for £ = 1,2 to be lognormal, with the population-
level mean and standard deviation of log i, given by a and o, respectively. Similarly,
the prior distribution of 3, is lognormal with parameters 3 and og.

We close the model by specifying hyperprior distributions for population-level pa-
rameters. First, we assume a standard normal prior for o and [, which is centered
around the values associated with linear probability weighting and its unit variance
yields an informative but dispersed prior.® Second, we choose a half t-student prior for
standard deviations of Prelec parameters 6;. Third, we choose a gamma prior for the
precision of the Beta distribution ¢. Finally, we let the probability parameters ¢y and
q1 to have beta priors given by Beta(1,1).1

Accordingly, our hierarchical model is given by

Wit ~ f('|fit79i,QO,Q17¢), 0; = (Oé1i,51z‘, 0621',521')
a;x ~ Lognormal(a, 0y,), =1,2
Bik ~ Lognormal(5,05), k=1,2
a ~ Normal(0, 1)
B ~ Normal(0, 1)
o, ~ Half-student ¢(3,0,2.5)
og ~ Half-student ¢(3, 0, 2.5)
¢ ~ Gamma(1,2)
qn ~ Beta(1,1), h=0,1.

The estimation involved two chains with different starting values and 2,000 itera-
tions each. Standard convergence tests were satisfactory, with almost all parameters
exhibiting effective sample sizes greater than 0.75 (see Appendix D for details).

Figure 6 depicts the posterior distributions of individual median values for the four
Prelec parameters and the distribution of individual-level standard deviations.'! The
distributions of medians give a measure of heterogeneity of weighting functions in the

population while the std. deviation distributions reflect the precision of individual-level

9For values of o or 3 larger than five the weighting function becomes very close to a step function,
so having a vague hyperprior that places a substantial mass above those values is not going to lead to
significantly different weighting functions while affecting the ability of the model to converge.

10We have tried alternative hyperprior specifications and have not found significant differences.

We obtain similar results using mean rather than median values.
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estimates. The distribution of median values reveals that 2nd-stage weighting is very
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Figure 6: Posterior density of median values (left) and standard deviations (right) of 6;. Red lines
represent distribution medians.

heterogeneous, with as; and fy; exhibiting substantial dispersion. In contrast, median
values of ay; and (y; are much more concentrated leading to a relatively homogeneous
1st-stage weighting function y;.'2

What do these parameter distributions tell us about the nature of uncertainty
preferences? First, they show that the vast majority of individuals exhibit inverted
S-shape weighting functions in both probability stages, given that median values of ay;
are below one, while ay; is lower than one for 93% of individuals. In addition, almost
all median values of §1; and a majority of fJy; are below one, implying overweighting of
probabilities in a range [0, p*] with p* > ™! &~ 0.368.1

To learn more about the distribution of SOAU preferences we look at the joint
density of weighting parameters (o, i) for k = 1,2, shown in the top row of Figure 7.
Confirming the above results regarding marginal distributions, the joint distribution of

(cvi2, Bi2) is highly dispersed, with most of the mass roughly placed in the lower triangle

2Individual estimates of 2nd-stage weighting parameters are more precise than 1st-stage estimates
given that the former exhibit much lower standard deviations. This is likely due to the fact that, since
m, only affects the uncertainty premium while mo affects both the risk and uncertainty premia, all
observations are effectively used to estimate ao;, S2; while only half contain information about ay;, 81;.

3For 8 < 1 the lowest p* = e~ is associated with 8 = 1.
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of rectangle [0, 1.5] x [0, 3]. Furthermore, there is a concentration of mass close to the
peak of the joint density, which occurs at a; = 0.86, £;2 = 0.92. Such concentration
represents agents whose risk preferences are well captured by expected utility, while
the mass spanning to the left captures s-shaped weighting functions that significantly
overweight small probabilities. The bottom-left graph of Figure 7 illustrates these
differences by depicting the range of 2nd-stage weighting functions corresponding to

two vertical slices of the joint density, one at a = 0.2 and the other at o = 0.9.

3.0 1.00

0.95

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ' ’ . . 2 . 0.50
ay oy
Il 00,02 [l (04,06 M (08 10] (12,1.4] B ©.200 [ 40 60] [l (80, 100] (120, 140] (160, 180]
level level
B 02,04 W (06,08 B (10,12 (14,1.6] B 20, 40] W (60, 80] [ (100, 120] (140, 160]

1.00 1.00

0.75 0.75

0.25 0.25

0‘08 at

0'08 .00 0.25 0.50 0.75 1.0

.00 0.25 0.50 0.75 1.0

Figure 7: Top panel: Posterior joint density of median values of (2, 8;2) (left) and (1, Bi1) (right);
white lines represent median values of each parameter. Left-bottom panel: 2nd-stage weighting func-
tions for iz = 0.2 and S5 € [0.2,2] (purple), and for ay = 0.2 and B2 € [0.4,1.15] (red). Right-bottom
panel: 1st-stage weighting functions.

In contrast, the density of (a;1,5;1) is highly concentrated along the diagonal of
rectangle [0.4,0.5] x [0.5,1], with the mode given by «;; = 0.44, B; = 0.8. These
estimates suggest that all agents significantly overweigh (underweigh) 1st-stage prob-

abilities below (above) 0.5, as illustrated in the bottom-right graph of Figure 7).
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The dispersion of 2nd-stage weighting functions leads to wide heterogeneity in risk
preferences. Since 1st-stage weighting functions are very homogeneous one might con-
clude that heterogeneity in risk preferences drives heterogeneity in uncertainty pref-
erences. However, this is unclear because the uncertainty premium depends on the
slope of my and the level of m. One way to understand the relative contribution of
each weighting function to the heterogeneity of uncertainty preferences is to look
at their relative contribution to the variation of the marginal uncertainty premium
po(p) = mh(p)(2Em — 1). Using the above joint distribution we computed the standard
deviation of 7)(p) for p € (0.1,0.9) and the standard deviation of 2Em;.'* We find
that the standard deviation of 74 (p) ranges between 0.26 and 0.44, while the standard
deviation of 2Em is about 0.12. These differences are much smaller than the large
differences in heterogeneity between ms and 71, although 2nd-stage weights still con-
tribute between two to four times more to the heterogeneity of the marginal uncertainty
premium than 1st-stage weights.

The population-level parameter estimates (see Table D.2 in Appendix D) reveal a
modest likelihood to report extreme values and substantial randomness in choice. On
average, the estimated probability of reporting WTP of 0 or 1 is about 7%, with most
of these choices being one (85%). This gives us a rough measure of irrationality (such
values imply a violation of stochastic dominance). As an illustration of the degree of

randomness, the interquartile range for a mean WTP of 0.5 is [0.416, 0.584].

6.1 Differences by Sociodemographics and Cognitive Skills

We next analyze differences in the distribution of preferences across different sociode-
mographic characteristics. Specifically, we plot the joint distribution of 2nd-stage
weighting parameters by income, age and gender (Figure 8), and also by financial
literacy and cognitive ability (Figure 9).

The joint distributions uncover some mild differences across sociodemographic
groups. Specifically, the densities of (a2, 5;2) for higher income individuals and men
place somewhat less probability mass at low values than lower income individuals and
women, respectively. However, these income and gender differences appear small given

that all densities are relatively flat and place all the mass in the same lower triangle.

14We avoid extreme values of p because 7 under Prelec functional form tends to infinity (or zero).
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Figure 8: Joint distribution of median values of (aw;, 82;) by selected demographics; white lines
represent median values of each parameter.
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In contrast, we find starker differences when we compare groups by financial literacy
and cognitive ability test scores. The distribution of (cz, f8;2) is more concentrated at
higher values for individuals with scores above the median, with very little mass in the
rectangle [0, 0.5] x [0, 1]. In addition, both have a peak close to linear weighting. This is
unlike the distribution of those with scores lower than the median score, which places
substantial mass in [0, 0.5] x [0, 1]. This implies that higher probability weighting for
known risks is more pronounced for individuals with lower levels of financial literacy

and cognitive ability.

Above median score Below median score

Above median score Below median score

Level W oo3 M osoo M 1215 1.8-2.1
evel W 03-05 [l 0912 [ 15-1.8 2.1-24

Figure 9: Joint distribution of median values of («s;, 82;) by financial literacy (top) and cognitive
ability (bottom); white lines represent median values of each parameter.

Unlike 2nd-stage weights, we do not find any meaningful differences in the distribu-

tion of 1st-stage weights across these characteristics, with most individuals reacting to
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the introduction of uncertainty by overweighting the likelihood of small risks p. These
results are confirmed by regressing risk and uncertainty premia on various sociodemo-

graphic characteristics, which are presented in Appendix E.

6.2 Partial Identification with Limited Data

Our estimation takes advantage of the richness of our incentivized survey data. How-
ever, data from insurance markets often lacks information about the uncertainty faced
by individuals. Is it possible to estimate individual preferences in such contexts? One
approach would be to use choice data across domains, e.g., auto insurance and home
insurance, to partially estimate preferences via a linear approximation of the 2nd-stage
weighting function m,. Since information and uncertainty about risks varies across do-
mains, they can proxy for uncertainty, while the linear approximation makes the uncer-
tainty premium proportional to the slope of 5. Specifically, under linear approximation

mo(p) = a + bp, WTP for insurance against unknown risk (p, ¢) is given by
W(p,e) = ma(p) + epo(p) = a+bp +eb(2Em, — 1) = a + bp + ce. (10)

In principle, we can estimate this linear regression from data {W, pit, €}, where ¢
represents the insurance domain. While p;; and €, are not observed, p;; can be measured
using empirical claim rates, as is typically done in the empirical insurance literature,
and the volatility of claim rates in each domain can serve as a proxy for &;.

Expression (10) also serves to illustrate the potential effects of abstracting from
the presence of uncertainty in the estimation of risk preferences. Omitting e from (10)
leads to an upward or downward bias in slope estimate b depending on whether risk p

and uncertainty € are positively or negatively correlated.

7 Conclusion

It is likely that consumers understand underlying risks in insurance markets to varying
degrees. Hence, to fully understand preferences in these markets, it is important to
incorporate preferences toward uncertain risks. Given that such preferences cannot
easily be estimated from observational data, in this paper we use incentivized surveys
to elicit risk and uncertainty preferences from a representative sample of US households.

Our paper makes two main contributions. First, we theoretically show the need to
incorporate probability weighting in both the risk and uncertainty domain to explain

the observed empirical patterns in individual demand for insurance. Second, equipped
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with this characterization, we estimate the joint distribution of risk and uncertainty
preferences in the population and examine the degree and sources of preference het-
erogeneity.

Methodologically, our work emphasizes the need to account for uncertainty in the
estimation of preferences and suggests ways to do so even with limited data. From an
econometrics perspective, our preference estimation exercise illustrates the potential
of Bayesian hierarchical methods to obtain distributional estimates that allow for a

comprehensive analysis of agent heterogeneity.
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Appendix A Descriptive Statistics

Table A.1 presents the summary statistics of the main sociodemographic variables of
households in the UAS.

Variable Mean Std. Dev.
Age 48.34 15.52
Female 0.57 0.49
Married 0.59 0.49
Some College 0.39 0.49
Bachelor’s Degree or Higher 0.36 0.48
HH Income: 25k-50k 0.24 0.43
HH Income: 50k-75k 0.20 0.40
HH Income: 75k-100k 0.13 0.34
HH Income: Above 100k 0.20 0.40
Black 0.08 0.27
Hispanic/Latino 0.10 0.29
Other Race 0.10 0.30
Financial Literacy (range: 0-100) 67.52 22.11
Cognitive Ability 50.70 8.66
No. Individuals 4,442

Table A.1: Descriptive Statistics - UAS

Appendix B Additional Results and Omitted Proofs

We first provide a full characterization of the uncertainty premium.

Lemma 1. The value of uncertain risk I(p,e) := Ulp — &,p + €] under SOAU with
linear utility is given by

1

Vo(I(p,€)) = —ma(p —€) — 25/ﬂ§(p +e(22 —1))m (1 — 2)dz. (11)

In addition, the uncertainty premium of 1(p, ) is

w(I(p,e)) = ¢ / o +eom (12) —m—en) (1-m (55))] a2
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The uncertainty premium given by (12) depends on two factors. The first is the
sensitivity to changes in risk probabilities, captured by the slope of the second stage
weighting function 7. The second is the level of first stage weights 71, with higher first
stage weights leading to higher uncertainty premia.!®

Proof of Lemma 1. Under linear utility u(z) = = the certainty equivalent of known
risk (¢, —1;1 —¢,0) is —my(q). Since this expression is decreasing in ¢, the distribution
of certainty equivalents induced by the uniform distribution on [p— e, p+£] is given by

—1 —1
_ S VI (—y)—p+5:p—|—5—7T2 (—v)
Gly) = Pr(g>m (~y) =1 5 5 ,

where 7, " denotes the inverse of 7. In addition, the lowest and highest certainty
equivalents are respectively associated with the highest and lowest loss probabilities,
ie., y=—m(p+e)and y = —m(p — €). Accordingly, expression (2) leads to

—m2(p—e¢)

+e—m (=
o) = -mp-9- [ m (P g
—ma(pte)
Applying the change of variable ¢t = 7, '(—y) we obtain
pte
+e—1
Vo(I(p,) = —ma(p —€) — / () (292_6 ) "
p—e

A second change of variable z = % implies that 2edz = dt and that the new limits

of integration are z = 0 and z = 1, leading to expression (11).
To prove the second part of the proposition, note that the uncertainty premium
satisfies V,,(I(p,€)) = —p(I(p,e)) — p(p) — p. Since p(p) = m2(p) — p, we have that

p(I(p,e)) = —ma(p) + ma(p —e) + 25/7r p+e(2z—1))m (1 —2)dz.

By the fundamental theorem of calculus we can express my(p) as

0 1/2
ma(p) = ma(p — &) + /Wg(p +t)dt = mo(p — €) + 2¢ / mo(p+ (22 — 1))dz,

I5Higher 7 increases the positive term and lowers the negative term in the integrand of (12).
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where the last equality follows from the change of variable z = t; <. Hence,
1/2 1
w(I(p,e)) = —25/7T§(p—|—8(22—1 dz+25/7r p+e(2z—1))m (1 —2)dz
0 0
1/2 1
= —2¢ / mp+e2z—1)) (1 —m (1 —2))dz + 2¢ / mo(p+¢e(22 — 1))m (1 — 2) dz.
0 1/2

The last expression leads to (12) by applying the change of variable 2’ = 1 — 2z to the
first integral and 2z’ = 2z — 1 to the second integral. O]

Proof of Proposition 1. Dividing both sides of (12) by e and taking the limit as e — 0
we obtain

1 1
. ,u([(p,s 1—2z 142
EL%T)) — 2 (p) /m ( )t [ () a1
0 0
1/2 1 1
= my(p) 2/7T1 (') dzl+2/7T1 (2)dz' — 1| =7(p) 2/7r1 (2)dz' =11,
0 172 0

where the integrals in the left-hand side of the last equality are derived via changes of
variable 2’ = 1+Z , respectively. O

Appendix C Alternative Preferences

We show in this section that EU-based uncertainty preferences cannot explain the risk
premium patterns without resorting to non-standard functional forms of the utility
function. In addition, we show that adding reference dependence or allowing for a set
of utility functions such as the multi-prior multi-utility model of Riella (2015) exhibit
the same problems as EU-based models.

First, we focus on EU-based preferences. Since they reduce to EU under known
risks, the value of binary risk (p, —1;1 — p,0) given initial wealth w is

EU(p) = pu(w — 1) + (1 — pJu(w). (13)

The evaluation of uncertain risks of the form I(p,e) then typically involves an opti-
mization problem over expected utility of known risks or computing the expected value
of some non-linear function of EU of known risks. An example of the former approach
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are variational preferences

V(I(p,e)) = minyeoq1) (EUP) + c(p';p,€))

where ¢ is a cost function that depends on beliefs.!® The smooth ambiguity model
follows the expectations approach. Under the belief that p ~ Ulp — ¢, p + €], the value
of the uncertain risk is given by

Vi) = [ owue,

where ¢ is an increasing function.

As the next proposition formally establishes, EU-based models and preferences with
concave weighting functions cannot explain the switch from risk aversion to risk loving
as p goes up without resorting to non-standard s-shape type functional forms.

Proposition 4. Assume that there exists p* € (0,1) such that u(p) > 0 for p < p*
and p(p) < 0 for p > p*. If the DM has initial wealth w and maximizes expected utility
under known risks then the upper convex envelope of u(x) is below the line connecting
u(w — 1) and uw(w) for all x € (w — 1,w — p*) and its lower concave envelope is above
such line for all v € (w — p*, w).

Proof. Part (i): We prove first the condition regarding the lower concave envelope.
The expected utility of risk (p,—1;1 — p,0) is given by pu(w — 1) + (1 — p)u(w). A
positive risk premium for p € (0, p*) involves u(w—p) > pu(w—1)+(1—p)u(w). Letting
r =w — p we get that u(z) > z(u(w) — u(w — 1)) + u(w)(l — w) + wu(w — 1). Since
the RHS is linear in z the strict inequality implies that we can always find a concave
function g(z) satistying u(z) > g(x) > z(u(w) —u(w — 1)) + u(w)(1 — w) + wu(w — 1)
for all x € (w—p*, w). The proof for the upper convex envelope is similar and therefore
omitted.

Part (ii): The risk premium under linear utility u(z) = x is given by u(p) = ma(p)—p
so the condition is immediate. O

Either adding a reference point (deterministic or stochastic) to the utility function
or allowing for multiple utility functions, such as in cautious expected utility (Riella,
2015; Cerreia-Vioglio et al., 2015), does not help to explain the switch. In the former
case, reference-dependent preferences must exhibit a switch between loss aversion to
gain loving, while in the latter case the set of utilities considered by the DM cannot
contain concave utility functions.

Reference-dependent preferences involve taking expectations over the utility of
changes w.r.t. a reference point z*, given by the function v(x — z*). Reference points
can be deterministic or stochastic. Regarding stochastic reference points, which were
introduced by Készegi and Rabin (2006), when evaluating WTP for full insurance, it is
natural to make the lottery (p, —1;1 — p,0) the reference point. In this case, Sprenger
(2015) has shown that stochastic reference point leads to risk neutrality when choosing

16For instance, maximin EU is associated with cost function ¢(p';p,e) = 0if p’ € [p — &, p + €] and
c(p';p,e) = oo otherwise.
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a deterministic outcome (full insurance), thereby predicting a risk premium equal to
zero for all p. Accordingly, we focus on deterministic reference points.

The value of known risk (p, —1; 1—p, 0) for a DM with initial wealth w and reference
point x* is given by

Vilp) =po(w —1—2") + (1 = p)o(w — a7). (14)

Two popular choices of reference points are either initial wealth (z* = w) or expected
final wealth (z* = w — p) as in the model of disappointment aversion (Bell, 1985;
Loomes and Sugden, 1986; Gul, 1991). They respectively lead to

Vi(p) = pv(=1) + (1 — p)v(0) (15)

and
Vi(p) = pv(=1+p) + (1 —p)v(p). (16)

The next result shows that for reference-dependent preferences to explain the risk
premium data we would need to resort to non-standard utility functions that switch
between concavity /convexity or between loss averse/gain loving as wealth changes go
above some threshold p* € (0,1).

Proposition 5. Assume that there exists p* € [0, 1] such that p(p) > 0 for p < p* and
wu(p) < 0 for p > p*. If the DM mazimizes expected utility v(z — x*) over gains/losses
with respect to reference point x* then

(iii.a) if x* = w then the upper convex envelope of v(z) is below the line connecting
v(—=1) and v(0) for all z € (—1,—p*) and then its lower concave envelope above
the line for all z € (—p*,0);

(#i.b) if x¥* = w — p then ”(O)If;p_l) > ”(p);”(o) (loss averse) for all p € [0,p*) and

v(0)—v(p=1) _ u(
17pp < v

);v(o) (gain loving) for all p € (p*, 1].

Proof. Part (iii.a): If the reference point is current wealth, then the expected value
of risk (p,—1;1 — p,0) is given by pv(—1) + (1 — p)v(0). A positive risk premium
implies v(—p) > pv(—1)+ (1 —p)v(0). Hence, the proof follows from applying the same
argument in the proof of part (i) of Proposition 4 to v instead of u for the range of
losses (—p*,0).

Part (i1i.b): 1f the reference point is expected final wealth y — p, then the expected
value of risk (p, —1;1—p, 0) is given by pv(p—1)+ (1 —p)v(p). A positive risk premium
implies

v(0) > pu(p — 1) + (1 = p)o(p) = p (v(0) —pv(p — 1)) > (1 —p) (v(p) — v(0)),
which proves the condition. O

The multi-prior multi-utility model of Riella (2015) a value of I(p,€) given by

V(I(p,e))= min  minu ' (pu(w — 1) + (1 — p)u(w)),
p’ E€[p—e,pte] ueld
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where U is a set of increasing utility functions normalized to yield the same utility level
at w — 1 and w. The next proposition establishes that U cannot include concave utility
functions if the DM switches from risk aversion to risk loving as p goes up.

Proposition 6. Assume that there exists p* € [0, 1] such that p(p) > 0 for p < p* and
w(p) <0 for p > p*. If the DM has multi-prior multi-utility preferences then the upper
convez envelope of u is below the line connecting u(w — 1) and u(w —p*) for allu € U.

Proof. The minimum certainty equivalent of p associated with a utility function in U
is given by IJlelLl{l w(p'u(w —1) + (1 — p)u(w)). Since the risk premium p(p) is below p
for p > p* the minimum certainty equivalent must be above w — p. Since utilities are
normalized to have the same values at w — 1 and w, they all share the same EU line
connecting u(w — 1) and w(w). But this implies that EU(p) > u(w — p) for all u € U
and all p € (p*,1). That is, all utility functions in the set U are below the EU line for
values in (w — 1,w — p*), yielding the result. ]

Appendix D Bayesian Estimation

The estimation of Bayesian model (9) involves two main hurdles. First, the model
is a high-dimensional non-linear model. Second, computing the distribution of WTP
involves an integral with no closed-form solution. These features make the model diffi-
cult to estimate and computationally demanding. To overcome these hurdles we code
and fit our model in Stan (Stan Development Team, 2019), a probabilistic modeling
language that allows for Bayesian inference with Markov Chain Monte Carlo (MCMC)
sampling. Stan is ideally suited for non-linear models and provides built-in functions
such as numerical integration. In addition, it has an adaptive sampling algorithm (No
U-turn sampler or NUTS) that facilitates MCMC convergence and allows for within-
chain parallel computing to speed up the estimation. We fit our model using the R
interface CmdStanR (Gabry and Cesnovar, 2021).

We run two Markov chains with 2,000 iterations each. Initial values for chain
1 were set to « = —=0.7,8 = —0.36,0, = 03 = 04,90 = 4,¢ = 0.1,¢; = 0.8 and
a; = B =1 = 0.5 for all 7. Initial values for chain 2 were set to a« = 8 =0.1,0, = 0 =
2,0=2,q=0.3,q1 =0.6 and a; = =1 = 1.1 for all .. We first present convergence
tests of the MCMC sampling both within and between chains and then provide the
population-level-parameter estimates.

Figure D.1 shows that the traces of the last (post warm-up) 1,000 iterations of both
chains mix well, with the two chains exploring the same region of parameter values.
Overall, there was only one divergent iteration out of 2,000.

A typical statistic to check for convergence to a common distribution is the split-
R, which measures the ratio of the average variance of draws within each chain to
the variance of the pooled draws across chains. Such ratios should be one if the chains
have converged. If the chains have not converged to a common distribution, the split—lfi
statistic will be greater than one. A common threshold for divergence is 1.05. Figure D.2
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Figure D.1: Traces of selected parameters.
shows the values of split-R for all the parameters (over 17,000). All of the values are

extremely close to 1.

ﬁ 105
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A

Figure D.2: Split-R of model parameters.

Figure D.3 plots for each chain the marginal energy distribution 7 and the first-
differenced distribution mag. Both histograms overlap nicely and show an absence of
heavy tails, which are challenging for sampling.

Finally, Figure D.4 shows the ratio of effective sample size (N.ss) to actual sample
size (N) for all model parameters. this ratio estimates the fraction of independent
draws from the posterior distribution. The ratio is larger than 0.75 for almost all
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Figure D.3: Energy distributions for chain 1 (left) and chain 2 (right).

parameters, implying low autocorrelation of MCMC draws.!”

- N/N=0.1
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= Nei/N=05

Figure D.4: Effective sample size ratio of model parameters.

Table D.2 presents the population-level parameter estimates. They measure the
tendency to report extreme values of WTP as well as the randomness of WTP responses
with respect to SOAU preferences. On average, the estimated probability of reporting
WTP of 0 or 1 is about 7%, with most of these choices being one (85%). This gives
us a rough measure of irrationality, in the sense that such values imply a violation
of stochastic dominance. The precision of the beta distribution is about 16, which
suggests that, while WTP is clearly informed by preferences it exhibits substantial
randomness.

17 A ratio greater than one implies negative autocorrelation leading to a smaller variance of the mean
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Parameter Median Std. deviation

q 0.0688 0.0012
@ 0.852 0.0071
¢ 16.2 0.140
a -0.831 0.0137
3 -0.222 0.0096
o 0.768 0.0122
o4 0.639 0.0076
Log Probability® 6560 137
No. Obs. 39,950

No. Individuals 4,268

@ Unnormalized log density of the model.

Table D.2: Model Estimates: Population-level Parameters

Appendix E Covariates of WTP

Table E.3 shows the results of regressing uncertainty premium on range size, whether
the information about the range is ambiguous, the error in the quiz regarding reducing
compound risk (normalized by range size), financial literacy and cognitive ability, as
well as sociodemographic variables. All the regressions control for risk probability p
and for whether the known risk scenario was presented before uncertain risks or if the
order was reversed (p-values are adjusted to control for multiple hypothesis testing).
The first column shows the regression estimates without controlling for risk attitudes
(11(p)), while the second column does control for risk attitudes.

Several conclusions emerge from these estimates. First, risk attitudes are by far the
most important covariate of uncertainty premium: Risk premium accounts for about
9% of the overall variation of the uncertainty premium, while the rest of variables
combined only account for a R? of 3%. Second, the table reflects the relationship
between risk probabilities and range sizes depicted in Figure 2, namely, the wider
the range and the lower the risk probability the higher the uncertainty premium. In
contrast, whether the range is ambiguous or not does not lead to significant differences
in the uncertainty premium. Third, gender, income, as well as cognitive ability and
financial literacy are significantly associated with risk attitudes. The third column in
Table E.3 shows that individuals with higher financial literacy and cognitive ability
are less risk averse. Similarly, being male and earning an income above $100k are
associated with lower risk aversion. These relationships are consistent with previous
studies about risk attitudes (Outreville, 2014).

Finally, we find significant order effects, with higher uncertainty premia associated
with the reverse order, i.e., when agents were asked about WTP for unknown risks

estimate than the one obtained from independent draws of the true posterior.
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p(1) p(l) 1(p)
Risk Probability -0.06%F* -0, 14%** -0.417%%*
(0.01)  (0.01) (0.01)
Range Size O.11%F%  0.11%**
(0.01)  (0.01)
Ambiguity 0.54 0.50
(0.33) (0.32)
1(p) -0.19%%
(0.01)
Financial literacy -0.15 -0.45 -1.71%*
(0.23)  (0.23) (0.50)
Average Cognitive Score 0.49 0.30 -1.34*
(0.24)  (0.23) (0.48)
Quiz Error -0.06 0.22
(0.09)  (0.09)
Age -0.05 -0.04 0.08
(0.07)  (0.06) (0.14)
Age? /100 0.04 -0.01 -0.24
(0.07)  (0.06) (0.13)
Female -0.64 0.11 3.90%**
(0.35)  (0.35) (0.76)
Married -0.60 -0.73 -0.59
(0.37) (0.36) (0.83)
Some College 0.29 0.01 -1.22
(0.48) (0.47) (1.02)
Bachelor’s Degree or Higher 0.28 -0.15 -2.19
(0.54)  (0.54) (1.16)
Hh Income: 25k-50k 0.45 0.53 0.21
(0.54) (0.53) (1.16)
Hh Income: 50k-75k 0.38 -0.11 -2.82
(0.60)  (0.58) (1.26)
Hh Income: 75k-100k 0.75 0.59 -0.97
(0.62)  (0.62) (1.41)
Hh Income: Above 100k 0.29 -0.85 -6.38%+*
(0.62)  (0.62) (1.33)
Non-Hispanic Black -1.70 -1.21 2.58
0.75)  (0.71) (1.53)
Spanish /Hispanic/Latino 0.31 0.30 0.04
(0.70) (0.70) (1.37)
Other Race/Ethnicity -0.12 0.10 1.23
(0.66)  (0.63) (1.24)
Reverse Order 4.64%*%  4,13%%* -2 51 Ak
(0.33)  (0.32) (0.71)
R? 0.03 0.13 0.20
N 19,050 19,050 19,432

All regressions include a constant and standard errors are clustered. Regressions including pu(p)
are IV regressions with the linear interpolation of adjacent risk premia as the instrument for u(p).
Bonferroni-adjusted p-values: *p < 0.10, **p < 0.05, ***p < 0.01

Table E.3: Covariates of uncertainty premium and Risk Premium



first. This may suggest that being exposed to known risk may have an anchoring effect
on WTP for insurance against unknown risks.

Appendix F Instructions

You can earn up to $10 for the next part. The amount you earn depends on the
decisions you make, so you should read carefully!

We will ask you to make decisions about insurance in a few different scenarios. This
time, at the end of the survey, one of the scenarios will be selected by the computer
as the “scenario that counts.” The money you earn in the “scenario that counts” will
be added to your usual UAS payment. Since you won’t know which scenario is the
“scenario that counts” until the end, you should make decisions in each scenario as if
it might be the one that counts.

We will use virtual dollars for this part. At the end of the survey, virtual dollars
will be converted to real money at the rate of 20 virtual dollars = $1. This means that
200 virtual dollars equals $10.00.

Each Scenario

e You have 100 virtual dollars
e You are the owner of a machine worth 100 virtual dollars.

e Your machine has some chance of being damaged, and some chance of remaining
undamaged, and the chance is described in each decision.

e You can purchase insurance for your machine. If you purchase insurance, a
damaged machine will always be replaced by an undamaged machine.

e At the end, in the scenario-that-counts, you will get 100 virtual dollars for an
undamaged machine. You will not get anything for a damaged machine.

Paying for Insurance

You will move a slider to indicate how much you are willing to pay for insurance,
before learning the actual price of insurance. To determine the actual price of insurance
in the “scenario that counts”, the computer will draw a price between 0 and 100 virtual
dollars, where any price between 0 and 100 virtual dollars is equally likely.

If the amount you are willing to pay is equal to or higher than the actual price,
then:

You pay for the insurance at the actual price, whether or not your machine gets
damaged

If damage occurs, your machine is replaced at no additional cost

If there is no damage, your machine remains undamaged

You get 100 virtual dollars for your machine
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e That means you would earn 100 virtual dollars (what you start with) PLUS 100
virtual dollars (amount you get for machine) MINUS the price of insurance.

If the amount you are willing to pay for insurance is less than the actual price, then:
e You do not pay for the insurance

e If damage occurs, your machine is damaged and you do not get any money for
your machine. That means you would earn 100 (what you start with) but you
would not earn anything for your machine.

e If there is no damage, your machine remains undamaged and you get 100 virtual
dollars. That means you would earn 100 virtual dollars (what you start with)
PLUS 100 virtual dollars (amount you get for the machine).

This means that the higher your willingness to pay, the more likely it is that you
will buy insurance.

BASELINE BLOCK: ALL TREATMENTS

Remember: You can earn up to $10 for the next part. The amount you earn depends
on the decisions you make, so you should read carefully!

KNOWN DAMAGE RATE: The chance of your machine being damaged is 5% [10,
20, etc|.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and you will get 100
virtual dollars for it. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and you will not get any money for it.

| Slider moves from 0 to 100 in integer increments. |

CONFIRMATION MESSAGE

You have indicated you are willing to pay up to X for insurance. Continue? Y / N

RANGE BLOCK: AMBIGUOUS RANGE

UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is
between 3% and 7% [8-32 etc]. The exact rate of damage within this range is unknown.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

| Slider moves from 0 to 100 in integer increments. |

RANGE BLOCK: NON-AMBIGUOUS RANGE
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UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is
between 3% and 7% [8-32 etc|. All damage rates in this range are equally likely.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

| Slider moves from 0 to 100 in integer increments. |

QUESTION

Before we finish, we’d like you to answer a final question. You will receive $1 for a
correct answer.

Suppose a machine has a chance of being damaged between X and Y%. All damage
rates in this range are equally likely. What is the average rate of damage for this
machine?

The ranges to use in the question are: Group 1: range 3-7%; group 2: range 3-17%;
group 3: 8-32%; group 4: 21-39%

END SCREEN

Thank you for participating!

The computer selected scenario X to be the “scenario that counts”

The computer selected the price of X virtual dollars for the insurance. Since the
maximum you were willing to pay for insurance was X virtual dollars, you [bought /did
not buy| insurance at the price of X.

The likelihood of damage for scenario X was [X%/between X% and Y%|. Your
machine [was / was not| damaged and you got | nothing / amount | for your machine.

Based on the scenario the computer selected, your earnings for this part are X
virtual dollars.

Converted to real money, your earnings are $X (X virtual dollars divided by 20).

You also earned $0 / $1 in the previous question.

A total of $X will be added to your usual UAS payment.

39



	Introduction
	Related Literature
	Data
	Empirical Patterns
	Modeling Uncertainty Preferences
	Second Order Anticipated Utility
	Alternative Preference Models

	Preference Estimation
	Differences by Sociodemographics and Cognitive Skills
	Partial Identification with Limited Data

	Conclusion
	Descriptive Statistics
	Additional Results and Omitted Proofs
	Alternative Preferences
	Bayesian Estimation
	Covariates of WTP
	Instructions

