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Abstract

Technological advances in the insurance industry mean that insurers now may
be better informed about underlying risks faced by individual consumers than
consumers themselves. We evaluate the impact of these information frictions
on welfare by combining demand elicitation surveys with insurance claim data.
As expected, we find an ‘uncertainty premium’ -i.e., consumers are willing to
pay more for insurance when risks are uncertain. Interestingly, we find that the
uncertainty premium is negatively correlated with risk aversion at all sizes and
probabilities of risks. This leads to a selection effect: individuals who purchase
insurance are not necessarily the most risk averse. We show that the resulting
misallocation of insurance leads to large welfare losses.
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1 Introduction

The insurance industry plays a central role in the economy. In the United States,
insurance premiums amount to $1.35 trillion each year, or about 6% of gross domes-
tic product.! The industry is experiencing a technological transformation with the
emergence of InsurTech companies using big data, artificial intelligence and machine
learning to assess consumer risk.? The increasing availability of personal-level data and
computing tools to insurers means that they may be able to obtain more precise esti-
mates of underlying risks than those available to consumers. Consumers, on the other
hand, may have difficulty estimating their own risks. For example, when purchasing
flood insurance, consumers need to reduce the compound lottery consisting of risk of a
hurricane and risk of damage to their home in the case of a hurricane. Further, in new
environments, consumers may be uncertain about the precise level of risk but may be
able to estimate a range of risks.

The impact of the changing information asymmetry between insurers and con-
sumers is not well understood. This is in large part because understanding the impact
requires data on two key demand factors that are typically unobserved in insurance
claim data. The first factor is consumers’ attitudes toward underlying risks when those
risks are uncertain or complex. This affects the extent of information frictions (Handel
and Kolstad, 2015). Laboratory experiments using lottery choices have documented
that individuals are ambiguity averse and have difficulty reducing compound lotteries
(Halevy, 2007). This suggests that willingness-to-pay (WTP) for insurance should be
higher when underlying risks are uncertain versus when they are known (i.e., a level
effect). We refer to the difference in WTP under uncertain and certain risks as the
‘uncertainty premium.’

The second factor is the relationship between risk preferences, measured by the risk
premium an agent is willing to pay over the actuarially fair price of insurance, and the
uncertainty premium. This factor is critical since it determines the allocative effect
of information frictions (i.e., a selection effect). A positive correlation implies that as
risk-related information becomes more uncertain, more risk averse agents will be more
likely to buy insurance. On the other hand, a negative correlation implies that as
risk-related information becomes more uncertain, more risk averse agents will be less

likely to buy insurance. The latter possibility implies negative welfare consequences for

1See https://www.iii.org/fact-statistic/facts-statistics-industry-overview.

2For an overview of recent technological trends, see the 2020 OECD report on insurance and big
data (https://www.oecd.org/finance/Impact-Big-Data- Al-in-the-Insurance-Sector.pdf). Companies
like Google and Amazon invested in InsurTech companies in 2018 and are considering entering insur-
ance markets (https://www.insurancejournal.com/news/national /2019/01/02/513324.htm).


https://www.iii.org/fact-statistic/facts-statistics-industry-overview
https://www.oecd.org/finance/Impact-Big-Data-AI-in-the-Insurance-Sector.pdf
https://www.insurancejournal.com/news/national/2019/01/02/513324.htm

consumers, since those who value insurance most will be less likely to purchase it when
information about underlying risks is uncertain. Despite being a key determinant of
demand, the relationship between risk and uncertainty premia remains unknown due
to data limitations, making the study of information frictions and policy evaluation
in insurance markets all but intractable without imposing strong assumptions on their
joint distribution.?

This paper advances our understanding of insurance demand by measuring the
relationship between risks, risk preferences and uncertainty attitudes and quantifies
the potential impact of information frictions on insurance markets. We overcome the
inherent lack of observability of these demand determinants by generating new data
using surveys and conduct market analysis by combining them with existing estimates
on insurance claim rates from administrative data. The paper provides insights into
the welfare implications of uncertainty in risk information, and highlights the impact
of managerial and policy decisions about information disclosure on consumer welfare.

In our main survey, over 4,000 individuals representative of the U.S. population
are asked their WTP to fully insure a hypothetical product that has a known value.
Respondents make a series of decisions in which we exogenously vary underlying risks
(captured by the probability that the product loses its value) and risk-related infor-
mation (including certain risks and uncertain risks such as a range of risk probabilities
and compound risks). The survey has several attractive features. First, it provides in-
centives for truthful reporting of WTP: respondents receive up to $10 based partly on
their decision and partly on whether the product loses value. Second, the experimental
variation in risk and risk-related information allows us to jointly estimate the relation
between risk and uncertainty attitudes at different risks. We replicate our results in a
companion survey with 5,000 individuals that uses non-incentivized hypothetical de-
cisions over large stakes ($5,000 losses), and in an incentivized laboratory experiment
with university students. An advantage of the large-stakes survey is that it may be
more relevant to decisions in actual insurance markets.

As expected, we find that WTP for insurance is significantly higher in settings with
uncertain risks than in settings with certain risks. The average uncertainty premium
is positive for most relevant values of risk probabilities and is as high as 100% of the
expected loss. Crucially, we uncover a negative correlation of about —0.3 between the
risk premium and the uncertainty premium across individuals, which is replicated in

our high-stakes survey and in our laboratory experiment.* The magnitude of the cor-

3For instance, Handel and Kolstad (2015) and Handel et al. (2019) assume that risk preferences
are independent of information frictions to estimate risk aversion from health insurance choices.
4We apply the obviously related instrumental variables (ORIV) approach of Gillen et al. (2019) to



relation is remarkably invariant to both variation in risk probability and in individual
characteristics such as demographic background, socio-economic status, cognitive abil-
ity or financial literacy.® It implies that less risk averse individuals may sub-optimally
over-insure when underlying risks are uncertain.

We next conduct market equilibrium and welfare analysis by combining the survey
data with auto collision insurance claims data. Specifically, we derive the distribution
of risk probability from the empirical distribution of insurance claim rates estimated
by Barseghyan et al. (2011), and use it to sample the WTP data from our survey. We
then construct demand curves in the presence or absence of uncertainty. This approach
allows us to identify the three demand determinants, namely, risks, risk preferences
and uncertainty attitudes, which are crucial to study the level and selection effects of
information frictions. We consider different supply-side scenarios that vary in terms
of degree of market competition (from perfect competition to monopoly) and ability
of insurers to price discriminate on the basis of risk (uniform pricing versus risk-based
pricing). Motivated by the advent of InsurTech, we also analyze the strategic choice
of information disclosure by a monopolist with precise estimates of the risks faced by
consumers and evaluate the welfare impact of mandatory disclosure policies.

Our market analysis points to a substantial misallocation of insurance. First, a
positive uncertainty premium drives up the average WTP for insurance, leading to a
level of aggregate demand about 10% higher relative to a world where agents are fully
informed about risks. Second, the average risk premium of those who select into buying
insurance is about 14% to 21% lower in the presence of information frictions due to the
negative correlation between the risk premium and the uncertainty premium. Overall,
we find that uncertainty about risks leads to a loss in consumer welfare ranging between
7% under perfect competition to 40% under monopoly. The results are quantitatively
similar whether or not insurers are allowed to price discriminate. Importantly, roughly
90% of the welfare losses are attributable to the selection effect, highlighting the large
economic impact of a correlation of —0.3 between risk and uncertainty premia relative
to a world in which risk and uncertainty aversion are perfectly aligned.

These effects stand in contrast to demand changes caused by other frictions studied

correct for potential measurement error and obtain similar correlation estimates.

5The uncertainty premium decreases as underlying risks increase and there is no significant dif-
ference in WTP between the two types of uncertainty that we consider - ambiguous and compound
risks. Further, we find that, while individual characteristics - for example, income, gender, financial
literacy and cognitive ability - account for 20% of the variation in risk premium, they only account
for 3% of the variation in uncertainty premium. The main covariate of uncertainty attitudes are risk
attitudes themselves, which alone account for 10% of the variation in uncertainty premium. This
implies that selection effects are predominantly driven by selection on risk preferences rather than on
socio-demographic characteristics.



in the literature, such as poor information about contract coverage and transaction
costs (Handel and Kolstad, 2015; Handel et al., 2019), pricing/subsidies (Domurat et
al., 2019) or insurance complexity (Bhargava et al., 2017). While such frictions tend
to reduce demand, our results show that uncertainty about risks increases demand and
leads to qualitatively different selection effects.

We also analyze strategic information disclosure by a monopolist. The optimal
information disclosure by a monopolist also depends on the relationship between the
uncertainty and risk premia. The data patterns that we observe imply that a monop-
olist with precise estimates of underlying risks should strategically withhold informa-
tion about risks from low risk consumers and disclose risk information to high risk
consumers. If a monopolist strategically withholds information in this way, this can
further exacerbate the selection issue.

Our findings have policy relevance that is timely to the technological transformation
of the insurance industry with the advent of InsurTech. Policies that simplify under-
lying risk information for consumers can improve the allocation of insurance. This
implies that a policy of mandatory information disclosure of risk estimates by insurers
unambiguously increases consumer welfare, regardless of the degree of market compe-
tition and of insurers’ ability to price discriminate. Our findings also have managerial
implications, since they highlight the tension between optimal monopolist information
disclosure policies and welfare costs to consumers.

In what follows, Section 2 provides a discussion of our contribution to related work.
Section 3 lays out the theoretical framework. Section 4 summarizes the first (main)
survey. Section 5 describes our main empirical findings. Section 6 presents our market

analysis and the main implications of our results. Section 7 concludes.

2 Related Literature

We contribute to the emerging empirical literature on the impact of information fric-
tions and behavioral biases on consumer welfare in insurance markets (Handel and
Kolstad, 2015; Bhargava et al., 2017; Handel et al., 2019; Domurat et al., 2019). Our
paper is closely related to the work of Handel et al. (2019), who use health insurance
data to estimate the welfare effect of information frictions regarding the perception of
coverage and costs across different types of health insurance (low- and high-deductible)
under the assumption that frictions are orthogonal to risk attitudes.

Different from the related work on information frictions in insurance markets, our

paper focuses instead on information about underlying risks and fully captures selection



effects by identifying the correlation structure between risk and uncertainty attitudes
without imposing any structural assumptions. From a methodological perspective, we
show the potential of augmenting field data with surveys aimed at eliciting preferences.
This approach has been applied to measure key macroeconomic relationships, such as
the impact of income shocks on consumption (Schulhofer-Wohl, 2011).

Our market equilibrium analysis extends the literature on selection in markets
(Einav et al., 2010; Einav and Finkelstein, 2011; Mahoney and Weyl, 2017; Spinnewijn,
2017; Handel et al., 2019). Specifically, we provide a direct measurement of selection
effects associated with information frictions about underlying risks and illustrate their
potentially large negative impact on welfare.%

We build on the experimental literature on ambiguity aversion. Ambiguity aversion
has been documented in experiments eliciting risk and ambiguity aversion (Cohen et
al., 1987; Einhorn and Hogarth, 1986; Di Mauro and Maffioletti, 2004; Chapman et al.,
2020). Two related papers in this context are the experiment on ambiguity attitudes
in the loss domain by Hogarth and Kunreuther (1989) and the analysis of ambiguity
attitudes with lotteries on a representative sample by Dimmock et al. (2016). We
are not the first to document that individuals are ambiguity averse; however, we are
the first to derive implications for the relationship between risk preferences and the
uncertainty premium.

Our findings also highlight the need to account for uncertainty in the estimation
of risk preferences from observational data. We address the estimation of preferences

under uncertainty in a companion paper (Gandhi et al., 2022).

3 Framework

We are interested in environments in which an agent’s demand for insurance might
vary with the information about the underlying (objective) risks. We formalize our
ideas by focusing on the following insurance framework. An agent is exposed to an
objective binary risk, defined as the probability p € [0, 1] that he suffers a loss. That
is, the set of outcomes is X = {0,1}, where x = 0 refers to experiencing a loss and
x = 1 refers to the absence of it, with p := Pr(z = 0).

The agent has access to information I € Z about risk p. We define an information

environment Z(p) C Z as a subset of possible I when the risk is p.” Information I

6The paper also contributes to research measuring asymmetric information in insurance markets
(Chiappori and Salanié, 2013). Specifically, our results cast doubt on using the correlation between
risk and insurance coverage as a gauge of the degree of adverse selection in the market.

"We implicitly assume the existence of a data generating process that maps p to a set of possible



can represent, for instance, sets of possible values of p or a probability distribution
over p. Different [ will typically lead to different beliefs about p, even if these beliefs
reduce to p, i.e., lead to the same expected probability of a loss. For instance, if the
agent’s beliefs are represented by a probability distribution over possible values of p,
an increase in the sample size would lead to a less dispersed distribution.

We consider the agent’s demand for insurance, expressed as the willingness to pay
(WTP) for full insurance, i.e., for a policy that ensures an outcome = = 1 after risks
are realized. Specifically, demand is given by a mapping W : Z(p) — R, where W (I)
denotes the WTP for insurance under information I € Z(p). Note that if the agent’s
preferences are represented by a utility function V' : Z(p) — R, then 1—W (1) represents
the certainty equivalent of /. Risk aversion is associated with a WTP higher than the

actuarially fair price of insurance under certain risks, i.e., when I = p.

Definition 1. The agent is risk averse (loving) at p € (0,1) if W(p) > (<) p. The
agent is risk neutral if W (p) = p.

If the specific attributes of I do not affect the agent’s demand for insurance we say
that the agent satisfies the reduction principle, i.e., her WTP only depends on p. That

is, she acts as if she reduces any information I € Z(p) into risk probability p.
Assumption 1 (Reduction Principle). W (I) = W (p) for all I € Z(p) and allp € [0, 1].

Definition 2. The agent is averse to uncertain risks at p if W(I) > W(p), for all
I €Z(p)\{p}

A preference for and neutrality with respect to uncertain risks are defined in a
similar fashion. To provide a measure of the impact of information frictions about
risks and how it relates to risk preferences we decompose the WTP for insurance into

a risk premium and an uncertainty premium.

Definition 3. The uncertainty premium of I € Z(p) is given by u(I) := W (I)—W(p).
The risk premium is u(p) :== W(p) — p.

A positive p(I) and a positive u(p) are respectively associated with aversion to

uncertain risks and to risk aversion.

3.1 Informational Effects on the Demand for Insurance

We decompose the impact of the information structure on aggregate demand into a

level effect and a composition or selection effect. The former measures how uncertainty

I the agent may receive.



changes the level of aggregate demand at any given price. The latter looks at it changes
the composition of demand in terms of both risk attitudes and risk profiles of those
acquiring insurance, keeping the level of aggregate demand fixed.

Let the population be given by a set of agents T.,® with each agent ¢t € T being
represented by the tuple (W, py, I;), where W, is the agent’s WTP function, p; is
her underlying risk, and I; € Z(p;) is the information she possesses about risk p;.”
Aggregate demand is given by the set of agents in 7" whose WTP, given by W,(1;),
is above the price for insurance p(p;). Price is allowed to vary with p; to capture the
possibility that insurers price discriminate based on underlying risk, in line with the
recent technological advances in risk assessment experienced by the insurance industry.
Accordingly, given a price function p(-), aggregate demand is pinned down by the joint
distribution of (W, py, I;). Abusing notation, let Z = {I; € Z(p;),t € T} denote the
information held by agents in market 7. Also, let F7 denote the cdf of W;(1;) under
information structure Z. Aggregate demand at risk p and price schedule p is then given
by 1 — Fr(p(p)lp: = p)-

The next result (trivially) provides the necessary and sufficient condition under
which demand is higher under uncertain risks, compared to certain risks. Let the

information structure under certain risks be denoted by P = {I, = p;,t € T'}.

Remark 1 (Level Effect). Aggregate demand is higher under Z than under P for
any price schedule p if and only if Fr(-|p, = p) first order stochastically dominates

EFp(-|p: = p) for all p.

A sufficient condition is that all agents are averse to uncertain risks.

Beyond acting as a demand shifter, information can also affect the composition
of demand, i.e., the preference and risk profiles of those acquiring insurance. The
composition depends on the relationship between W;(I;), Wy(p;) and p,. For instance,
if W;(1;) and Wy(p;) are not aligned for some fixed py, i.e., if the interpersonal ranking of
Wi (1) does not coincide with the ranking of individuals according to their risk aversion
(Wi(p¢)) then those acquiring insurance under information structure Z may exhibit a
different degree of risk aversion than those buying insurance under P. The following

simple example illustrates this composition effect.

Example 1. There are three agents, T = {1,2,3}, facing the same probability p, =
p = 10% of losing $100. Their WTP when I, = p are Wi(p) = 9 , Wa(p) = 8 and

W3(p) = 7. The price for insurance is $10. Consider the following two scenarios:

8T can represent a finite set of agents T'= {1,-, N} or a continuum of agents 7' = [0, 1].
9This characterization of demand for binary risks can be expressed in terms of a joint distribution
of individual surplus, costs and frictions following the approach of Handel et al. (2019).
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1. Aligned preferences: (1) =4, pa(lz) =2 and pz(Il3) = 0.
2. Negative Correlation: (1) =0, ps(Iy) = 2 and ps(l3) = 4.

In this example, no agent would buy insurance under certain risks. In the ‘aligned
preferences’ scenario, agents 1 and 2 buy insurance at the market price, since W;(I;) =
Wi(p) + ue(I;) > 10 for t = 1,2. In the ‘negative correlation’ scenario, agents 2 and
3 buy insurance. Hence, the level effect involves raising demand from 0 to 2 agents.
However, in the aligned preferences scenario it is the two most risk averse agents who
buy insurance, while in the negative correlation scenario the two least risk averse agents
end up acquiring insurance. Hence, while aggregate demand is the same across the
two scenarios, the composition or selection effect implies an average WTP for certain
risks of 8.5 when preferences are aligned, and only 7.5 when preferences are negatively
correlated.

The next result formally establishes that the misalignment of preferences across
information structures reduces the average degree of risk aversion among insured agents,
keeping the aggregate level of demand fixed. To do so we introduce the following
partial order over WTP rankings that captures the degree of preference alignment

across information structures.

Definition 4. Risk and uncertainty preferences are misaligned if there exist a set
of agents 7" C T such that for all ¢ € T there exist a subset 7(f) C T such that
Wi(pe) > Wy(py) and Wi(ly) < Wy (Iy) for all t' € 7(t).

In the context of a large market with a continuum of agents, a sufficient condition

for misalignment is that the risk and uncertainty premia are negatively correlated.

Remark 2. If there is a continuum of agents T = [0,1] and Fp, Fr have convex sup-

ports then a sufficient condition for preferences to be misaligned is corr(u(p), u(I)) < 0.

Fixing the level of aggregate demand, preference misalignment is associated with a
reduction in the average degree of risk aversion of the pool of insured agents. For any
fixed aggregate demand level D, which represents the number (or measure) of agents

acquiring insurance, let T, be the set of size |Tp| = D of agents with the highest WTP.

Remark 3 (Selection Effect). The average risk premium of agents in Tp is (weakly)
lower under T than under P at any given demand level D and strictly so for some

D < |T| if and only if preferences are misaligned.

The level effect can lead to over-provision of insurance. In addition, the selection

effect can have a large welfare impact due to a substantial reallocation of insurance



towards less risk averse individuals, even if the underlying risk profile of the pool of

insured agents does not change substantially across information structures.

3.2 Implications for information disclosure

The presence of informational effects shape insurers’ incentives to disclose information
to potential buyers. To illustrate the case, consider a monopolist with access to sophis-
ticated risk assessment tools. Specifically, assume that the monopolist observes p; or
is able to accurately estimate it. In addition to choosing the price schedule p(p), the
monopolist can decide whether to disclose p; to the agent.! To maximize profits the
monopolist will disclose information or not depending on whether aggregate demand

conditional on risk goes up or not.

Remark 4 (Information Disclosure). Disclosure of p to agents with p, = p is optimal
for a monopolist at all price schedules if and only if Fr(-|p; = p) first order stochastically
dominates Fp(-|p; = p).

4 Survey Design

Our primary empirical evidence comes from our main survey. This was an incentivized
survey that we conducted with a representative sample of the U.S. population who
are part of the Understanding America Study (UAS) at the University of Southern
California. The UAS is an internet panel with a representative sample of U.S. house-
holds. Over four thousand respondents participated in the survey, which included rich
socio-demographic information as well as measures of cognitive ability and financial
literacy.'! Appendix A provides the summary statistics of the respondents.

In the survey, we asked each participant to make a series of 10 decisions in private.
Each participant was told to be the owner of a machine, which was described to have
some probability p of being damaged. Undamaged machines paid out $5 (equal to $100
virtual dollars in the survey) to the subject at the end of the survey, while damaged
machines paid out nothing. The probability of damage, including information available
about said probability, was varied in each decision. Specifically, we considered the

following information environments:

(i) Certain risks: I represents the underlying risk probability, i.e., [ = p.

10Gimilar arguments apply to the case in which the monopolist can choose to obfuscate information.

1 All 5,674 UAS panel members were recruited to complete the survey online, and 4,534 respondents
accessed and completed the survey. 62 respondents started but did not complete the survey and are
excluded from our analysis.



(ii) Uncertain risks: I represents either a range of probabilities centered around p
(ambiguous risk), i.e., I = [p—e,p+¢] with € € (0, min{p, 1 — p}], or the uniform

distribution on such a range (compound risk), i.e., I = Ulp — e,p + €.

Table 1: Summary of Decisions Presented to Respondents, Survey 1

Group Decision # (1) Probability of (2) Range
(within block) Loss (%) Probability (%)
1 ) 3-7
2 10 1-19
1 3 20 13-27
4 20 46-54
5 80 68-92
1 ) 1-9
2 10 3-17
2 3 20 18-22
4 40 28-52
5 70 61-79
1 2 1-3
2 10 6-14
3 3 20 8-32
4 40 38-42
5 90 83-97
1 2 0-4
2 10 8-12
4 3 20 16-24
4 30 21-39
5 60 48-72

Notes: Respondents were assigned to one of four groups, and were presented both the probabilities described
in (1) and (2) in the order displayed here. Half of respondents were told that each probability in the range is
equally likely, while half were not given information about the probability distribution within a range.

We elicited maximum willingness to pay for insurance using the Becker-DeGroot-
Marschak mechanism (Becker et al., 1964),'* where the actual price of insurance was
drawn at random from the uniform distribution on (0, 100). Appendix F contains the
survey instructions. We divided participants into four groups, as described in Table 1.
Participants received a block of decisions with 5 risk probabilities under certain risk,
and a block of decisions with 5 range probabilities under uncertain risks. The order
of blocks was randomized, but the order of probabilities within each block was kept

constant and was ordered from smallest to largest.

12This is a common mechanism in similar experiments, for instance see Halevy (2007).
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Half of the participants under uncertain risks received a range noting that ‘all
numbers within this range are equally likely’ while the other half did not receive this
information. Hence, the former group received a compound risk, while the latter group
received an ambiguous risk. This design feature allowed us to check for potential
differences in attitudes towards two common sources of information frictions, namely,
the perception of risks as the realization of a series of bad shocks (compound risk) and
the lack of precise information about the distribution of shocks (ambiguous risk).

At the end of the survey participants were asked a question eliciting their ability
to reduce compound lotteries, and received $1 for a correct answer. Earnings were in
virtual dollars, which were translated to US dollars at the rate of 20 virtual dollars =
$1. Participation in all parts of the survey required approximately 15 minutes, and
participants earned $10 for survey completion, in addition to $8.6 on average in the

insurance experiment.?

5 Empirical Analysis

This section presents the main empirical patterns of determinants of insurance demand
under information frictions. First, we illustrate the magnitude of risk and uncertainty
premia and estimate their correlation structure, developing estimates that correct for
potential measurement error in WTP. Next, we investigate the relationship between
uncertainty premium and sociodemographic variables and the external validity of our
findings. In what follows, to facilitate comparisons, we report underlying risk probabil-
ities, WTP, as well as risk and uncertainty premia in percentages (e.g., u(p = 10) = 15

means that the risk premium for full insurance against a 0.1-likely loss is 0.15).

5.1 Risk Premium

Figure 1 displays the average risk premium (u(p) = W(p) — p) at each possible p. The
0 line represents risk neutrality. A clear pattern emerges from the figure: average risk
aversion decreases as losses become more likely, suggesting that agents transition from
exhibiting significant risk aversion at small probabilities to becoming risk lovers at very
high p. Table D.4 in Appendix D reports the estimates and their statistical significance.
In addition, we find risk premium to be widely heterogeneous: the standard deviation
ranges from 25% to 30%.

131t is common in the UAS to combine multiple studies in one survey session. As such, prior to
completing the experiment, participants also received a series of un-incentivized questions designed to
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Figure 1: Average Risk Premium at Different Probabilities (bars represent 95% confidence intervals).

5.2 Uncertainty Premium

Turning to informational effects, Figure 2 presents the average uncertainty premium
(u(I) =W(I) — W(p)) at each possible p. Each data point shows the range size asso-
ciated with it. Since our design includes two range sizes for most of the probabilities,
the graph displays two lines, respectively associated with small and big ranges.'* As
we show below, we do not find any major differences between uncertainty premium
under compound and ambiguous risks. Accordingly, we pool both types of uncertain
risks together.

On average, agents exhibit significantly large uncertainty premia at p < 50% when
range sizes are big, leading to an increase in WTP as high as 100% of the expected
loss. Smaller range sizes still elicit a strong response for p < 50%. uncertainty premium
decreases with risk probability, which is consistent with the finding by Abdellaoui et
al. (2015) that aversion to compound and ambiguous lotteries increases as winning
probability goes up. The uncertainty premium is somewhat less heterogeneous than
risk premia, with a standard deviation between 14% and 20%.

Since the typical probability of filing an insurance claim is substantially lower than
50%, the fact that we observe large uncertainty premia at p < 50% suggests that
markets where consumers face uncertain risks would exhibit greater demand due to

strong level effects.

evaluate understanding of annuity products for another project (Brown et al., 2019).
14Table D.4 in Appendix D shows the average uncertainty premium at each p by group.
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Figure 2: uncertainty premium at Different Probabilities (point labels represent range size and bars
represent 95% confidence intervals).

5.3 Relationship Between Risk and Uncertainty Premium

We next look at the correlation between the risk premium and the uncertainty premium
at each p, normalized by range size. Figure 3 plots the correlation coefficients, showing
that risk and uncertainty premia are negatively correlated at all risk probabilities,
with all coefficients significant at the 1% level. Correlation coefficients are remarkably
invariant to p and consistently lie between —0.24 and —0.35. Correlations are similar
when we control for individual characteristics, including cognitive ability, financial
literacy, and socio-demographics (partial correlations) or not (total correlation).!®

A concern with our estimates is that they may be biased due to measurement error
in WTP induced by the elicitation mechanism. The effect of such measurement error
goes beyond the typical attenuation bias, given that W (p) enters with a positive sign
in pu(p) = W(p) — p while it enters with a negative sign in u(l) = W(I) — W(p). To
correct for these biases, we follow the obviously related instrumental variable (ORIV)
approach proposed by Gillen et al. (2019), which is based on the idea of using additional
measures of the same variable as instruments. Appendix B describes the derivation of
the ORIV estimator for corr(u(p), u(I)) and presents the estimates for different p. We

obtain similar magnitudes and significance levels as those shown in Figure 3.

5Table B.2 in Appendix B reports total correlation coefficients and shows that they are statistically
significant. Partial correlation coefficients are virtually identical and thus omitted.
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Figure 3: Correlation Coefficients between Risk Premium and Uncertainty Premium.

5.4 External Validity

Our results are confirmed by our high-stakes non-incentivized survey and our laboratory
experiment. In the high-stakes survey, over 5,000 individuals from the UAS internet
panel made hypothetical decisions over large stakes. Specifically, respondents report
their hypothetical WTP to fully insure a used car against mechanical defects assessed
at $5,000, which is roughly in line with average claims in auto collision insurance.'¢

Appendix C describes the survey and presents the empirical analysis. Overall,
the data exhibits the same empirical patterns as the main survey, with two major
differences. First, individuals are less risk averse at high stakes, with risk premium
being significantly above zero only for p < 0.2. Similarly, the uncertainty premia are
lower under high stakes, although still large for p < 0.2.. As in the main survey, the
risk and uncertainty premia are negatively correlated with a correlation coefficients
consistently between —0.2 and —0.4. About 20% of the sample participated in both
the main and the high-stakes survey. We find that the risk premium across surveys are
significantly correlated for these individuals (the correlation coefficient is 0.39).

The laboratory experiment design included a similar set of decision questions as the
main survey. We also added an additional treatment for all subjects, multiplicative risks
to check the robustness of our results to alternative forms of compound risks. Elicitation
mechanisms and payments were similar to those in the main survey. Appendix E in
the Appendix provides a full description of the experiment as well as detailed results.

We find that risk and uncertainty premia are decreasing in risk probability p (Fig-

16 According to the Institute of Insurance Information, the average claim was $3,574 in 2018.
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ure E.4). In addition, risk and uncertainty premia exhibit a negative correlation of sim-
ilar magnitude: estimates lie between —0.24 and —0.35 (see Table E.9 in Appendix E).
The only major difference is that subjects in the experiment were less risk averse.

The remarkable invariance of our correlation estimates raises the question whether
we have uncovered a robust feature of individual risk and uncertainty attitudes or
whether they are just a byproduct of our specific survey design. We address this ques-
tion by computing the correlation between risk premium and compound risk premia in
the data of some of the most prominent studies looking at the relationship between am-
biguity and compound risk attitudes, namely the papers by Halevy (2007), Abdellaoui
et al. (2015) and Chew et al. (2017).

Table 2: Correlation between risk and insurance premia

P Study N correlation® ORIV correlation®
50 This paper - main survey 1,043  -0.347 -0.306***

50 This paper - high stakes survey® 804 -0.389*** -0.433*

50 This paper - experiment 119 -0.401** -0.299**

50 Halevy (2007) - $2 treatment 104 -0.557* -

50 Halevy (2007) - $20 treatment 38 -0.542% -

8.33  Abdellaoui et al. (2015)¢ 115 -0.418*** -

50 Abdellaoui et al. (2015)¢ 115 -0.365*** -0.310**
91.67 Abdellaoui et al. (2015) 115 -0.518"** -

50 Chew et al. (2017) 188 -0.493** -

@ Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

b p-values for ORIV correlation are computed using bootstrapped standard errors.

¢ ORIV correlation is computed using the sample of subjects who participated in both surveys. Replicas of the
risk premium at 50 are constructed using the main survey’s risk premium at 50 or at adjacent probabilities.

@ Correlation between the certain risk premium and hypergeometric CR premium.

¢ ORIV correlation from the Abdellaoui et al. (2015) dataset is computed using the average risk premium under
simple lotteries with winning probabilities 1/12 and 11/12 as a replica for the risk premium at probability 1/2.

As Table B.2 shows, correlation coefficients are significantly negative in all the
datasets. Interestingly, since the data in Abdellaoui et al. (2015) includes three different
probabilities we were able to calculate the ORIV correlation for p = 1/2, which turns
out to be identical to the ORIV correlation of —0.3 in our data.'”

17 Abdellaoui et al. (2015) use compound lotteries in their ‘hypergeometric CR’ treatment, preventing
us from obtaining a replica of the uncertainty premium given that such lotteries are hard to compare
across p. Nonetheless, the ORIV correction can still be performed by using a replica of the risk
premium at 1/2, obtained via linear interpolation with probabilities 1/12 and 11/12.
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6 Market Analysis

The empirical analysis shows that information about underlying risks is a significant
determinant of insurance demand. To illustrate its potential impact on insurance
markets, we combine our survey with existing claim rate data to simulate the demand
for full insurance against binary risks and evaluate the change in market outcomes due
to information frictions across different pricing and competition scenarios. We focus
on three main aspects of market performance, namely, aggregate insurance take up,
selection effects and welfare. In addition, we show how information frictions can create

incentives to engage in selective information disclosure under imperfect competition.

6.1 Constructing the Demand for Insurance

We construct the demand for insurance by drawing from our sample of (W;, py, I;) data
using the empirical distribution of risk probabilities derived from claim rate data in
existing insurance markets. Specifically, we use the distribution of semiannual claim
rates for auto-collision insurance estimated by Barseghyan et al. (2011) to generate a
distribution of risk probabilities. We then discretize this distribution using as a support
the eleven risk probabilities (from 0.02 to 0.90) covered by our survey. Finally, we
calculate aggregate demand for insurance, given by the share of agents with WTP above
market prices, by weighting each observation (W, py, I;) according to the likelihood of
p; given by the discretized distribution.

To construct the distribution over p;, we first assume that the need of agent i
to file an insurance claim follows a Poisson process with arrival rate \;. Given this,
agent i’s probability of suffering a loss, i.e., of filing at least one claim, is given by p; =
1—e~*. Next, we assume that )\; follows a gamma distribution with (annualized) mean
A = 0.116 and standard deviation 0.272.'® Accordingly, the cdf of risk probabilities is
given by H(p) = G(—log(l — p);0.182,0.638), where G(-; a, ) is the cdf of a gamma

distribution with shape parameter o and scale parameter (5.°

18Barseghyan et al. (2011) estimate that the average semiannual claim rate in auto collision insurance
is 0.058 with a standard deviation of 0.136.

19We use the following discretization: H(0.02) = H(0.025); H(0.05) = H(0.075) — H(0.025);
H(0.1) = H(0.15) — H(0.075); H(0.1n) = H(0.1n + 0.05) — H(0.1n — 0.05) for n = 2,3,---,8;
and H(0.9) = 1 — H(0.85). The mean under H is higher than under H (0.096 versus 0.070) since the
latter places substantial probability mass below p = 0.02.
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6.2 Market Equilibrium

Equipped with this demand curve, we analyze market equilibrium in two different
pricing scenarios. In the first scenario, insurers charge a single price for full insurance
(uniform pricing). This might be due to regulation banning risk-based pricing (e.g.,
the ACA bill in the US does not permit risk based pricing for health insurance) or
because insurers do not observe underlying risk probabilities, and thus are exposed to
adverse selection. In the second scenario, we allow insurers to charge prices contingent
on risk probability p; (risk-based pricing). In each scenario, we look at the market
allocation for prices that range from perfect competition to monopoly. By covering the
whole range of profitable prices we do not need to impose further assumptions on the
structure of competition among insurers in the spirit of Mahoney and Weyl (2017).

In each scenario we compare outcomes in the absence of information frictions (cer-
tain risk) to those under information frictions (uncertain risk).

We determine the equilibrium allocation for insurance under uniform pricing by
considering the set of prices, up to the monopoly price, that yield non-negative profits
to insurers. Let p denote the price for insurance and s(p) = 1 — F(p) the fraction of
agents in the population with W;(l;) > p where F' denotes the cdf of Wi (I;) in our
weighted dataset. That is, s(p) is the share of agents who buy insurance when the

price is p. Taking into account the presence of adverse selection, profits are given by

m(p) = (p— E@IWi(1;) > p))s(p).

In the case of risk-based pricing, we restrict our analysis to perfect competition and
monopoly. In the former, prices are actuarially fair, i.e., p(p) = p, while in the latter
the monopolist chooses p(p) to maximize profits.

Table 3 presents the main outcomes in equilibrium for the case of perfect competi-
tion and monopoly across pricing and information scenarios for both the incentivized
and the high stakes surveys. Since the impact of information frictions on market
outcomes are qualitatively similar across pricing scenarios we focus our discussion on
uniform pricing and briefly discuss any differences under risk-based pricing at the end

of this section.
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Table 3: Market Outcomes

Uniform Price

Risk-based Pricing

Overall Perfect Competition Monopoly Perfect Competition Monopoly
Population Certain  Uncertain Certain  Uncertain Certain  Uncertain Certain  Uncertain
Main Survey
Insured Pool
Share of Population 100% 62.3% 68.6% 27.2% 29.8% 87.7% 91.0% 23.6% 26.0%
Risk Probability 9.6% 12.8% 12.1% 15.6% 15.0% 7.8% 7.7% 9.6% 9.5%
Risk Premium 22.1 34.5 29.9 58.9 48.3 26.6 25.1 66.3 54.7
Info Premium 2.8 5.3 10.5 3.43 11.6
Consumer Welfare 21.3 19.9 6.6 4.0 23.3 22.8 5.4 2.9
Welfare Loss® 6.7% 39.4% 2.3% 46.4%
Selection Effect? 88.4% 95.1% 89.3% 95.2%
High-stakes Survey
Insured Pool
Share of Population 100% 27.0% 27.9% 9.6% 11.5% 58.5% 61.2% 15.5% 9.7%
Risk Probability 9.6% 13.2% 13% 14.1% 12.4% 4.8% 4.6% 4.1% 6.2%
Risk Premium 2.8 22.8 20.1 44.1 36.2 13.4 12.4 38.7 42.8
Info Premium 1.0 4.8 10.8 2.1 12.3
Consumer Welfare 6.2 5.6 1.8 1.0 7.8 7.6 2.8 0.6
Welfare Loss® 9.7% 43.9% 3.5% 77.3%
Selection Effect? 96.0% 88.5% 94.0% 28.5%

¢Difference between average welfare under simple and compound risk, relative to the average welfare under certain risk.

bDifference between average welfare in a market with the same demand at each p as under uncertain risk, but in which those with the highest risk premium get insurance, and

average welfare under uncertain risk, relative to the difference between average welfare under simple and uncertain risk.



6.2.1 Aggregate Demand

Figure 4 depicts the proportion of insured agents (s(p)) for simple and range risks. In
both cases the set of prices associated with non-negative profits is the interval [13, 50],
where p = 13 is the price under perfect competition and p = 50 is the monopoly
price, both represented by dashed blue lines. The level effect on aggregate demand
is substantial: information frictions lead to a 10-14% higher demand, driven by the

higher WTP of agents with positive uncertainty premia.

' I
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Figure 4: Demand for Insurance.

6.2.2 Selection Effects

In addition to increasing aggregate demand, information frictions lead to changes in the
risk profile of agents who buy insurance and, especially, in their level of risk aversion.

Regarding the risk profile of insurance buyers, there is adverse selection in equi-
librium, which gets exacerbated as the market becomes less competitive. Specifically,
Table 3 shows that the risk probability is 25% higher than the population average when
the market is competitive (12.8% versus 9.6%), and 50% higher under monopoly. Ad-
verse selection is nonetheless mitigated by the fact that the risk premium is decreasing
in risk as shown by Figure 1.

The introduction of information frictions slightly reduces adverse selection due to
the fact that the uncertainty premium is decreasing in risk (Figure 2), leading to a small

drop in risk probability (5% under perfect competition and 4% under monopoly).

19



| Perfect competition ! Monopoly
14 4

12

Ry

10 +

[

Premium

o
s

== Information premium
——Risk premium difference
====Selection effect

aunt

- L I
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
price

Figure 5: uncertainty premium and Differences in Risk premium.

In contrast, selection effects on risk preferences and uncertainty attitudes are sub-
stantial. The average risk premium of insured agents is between 13% and 17% higher
under certain risk than under uncertain risk, while their uncertainty premium is at
least twice the average uncertainty premium in the population. As Figure 5 illustrates,
these differences grow significantly with market price, i.e., as the market becomes less
competitive. Importantly, while these differences are partly driven by the fact that in-
formation frictions increase WTP and thus we should expect risk premium of insurance
buyers to be lower on average, the selection effect induced by the negative correlation
between risk and uncertainty premia accounts for a large fraction of the change in risk
premium. To quantify the selection effect we fix the level of aggregate demand under
uncertain risk and reallocate insurance to those with the highest risk premium. We
then compute the change in average risk premium caused by the reallocation, which
is depicted by the dotted line in Figure 5. The figure shows that the selection effect
accounts for 40% of the differences in risk premium under perfect competition and its

contribution increases to 81% under monopoly.

6.2.3 Welfare

The presence of information frictions leads to changes in consumer welfare. To assess
these changes, we follow the approach of Einav et al. (2010) to measure the welfare
from being insured as the difference between the WTP for insurance under certain

risks and the price for those who buy insurance. In line with the existing literature
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(Spinnewijn, 2017; Handel et al., 2019), we do not include the uncertainty premium
since the underlying risks covered by the policy are not altered by the information
available to agents. Nonetheless, it can be shown that this welfare measure would
differ from one that takes into account uncertainty attitudes only on the welfare of the
pool of agents that remain uninsured in either scenario. According to our measure, the

average welfare in the market is given by

E(Wi(pe) = p)Liws(1)>p})

where 1y, is the indicator function.

Information frictions operate through three main channels. First, they affect the
size of the insured population (level effect). Second, they impact market prices by
changing the risk profile of insurance buyers (adverse selection). Finally, they change
the risk preference profile of insured agents (selection effect).

The bottom panel in Table 3 shows the welfare estimates. The introduction of un-
certain risks leads to welfare losses ranging from 7% to about 40%, depending on how
competitive the market is. Importantly, they are almost entirely driven by the selection
effect, with roughly 90% of overall welfare losses caused by the negative correlation be-
tween risk and uncertainty premia. The reasons for the predominance of the preference
selection channel are twofold. First, the adverse selection channel is muted since the
drop in risk probability is too small to trigger noticeable price changes. Second, once
we control for the selection effect, the increase in aggregate demand is concentrated
among agents whose surplus from acquiring insurance is negative but close to zero,
accounting for a small fraction of overall welfare losses (~10%).

The magnitude of consumer welfare losses suggests that regulation aimed at pro-
viding simple information about underlying risks, such as the estimated probability
of filing a claim, would be beneficial for consumers regardless of the degree of mar-
ket competition. Our welfare results stand in contrast to the analysis by Handel et
al. (2019) showing that mitigating information frictions leads to welfare losses. The
reasons behind the apparent contradiction lie in the fact that we focus on a different
kind of frictions and that they assume that risk preferences are independent of fric-
tions. In their setting there are two types of contracts, low- and high-deductible health
insurance, and the main information friction roughly involves a lack of understand-
ing of the high-deductible insurance shifting demand away from it. As frictions are
reduced riskier consumers buy insurance pushing prices up via a significant increase
in adverse selection, and these welfare losses are not compensated by a selection of

more risk averse agents since preferences are assumed to be independent of frictions.
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Our analysis focuses instead on information about underlying risks and fully captures

selection on both risks and risk preferences.

6.3 Risk-Based Pricing

The right-hand-side panel of Table 3 shows that informational effects are quantitatively
similar when insurers engage in risk-based pricing. The only notable difference is
the presence of advantageous selection under perfect competition (p(p) = p), i.e., the
average risk probability of the insured pool is lower than that of the population as a

whole. This is driven by the risk premium being decreasing w.r.t. risk probability.

6.4 High Stakes

The bottom panel of Table 3 replicates the market analysis using the high-stakes data.
The results are qualitatively similar to the ones obtained using the main survey, with
several differences. First, the lower risk premia exhibited by respondents at high stakes
result in a smaller share of insured agents in the population. Further, because there is
a larger reduction in risk premium than in uncertainty premium relative to the main
survey, we see even bigger welfare effects.?’ Finally, there is substantial advantageous

selection under risk-based pricing regardless of the degree of competition.

6.5 Strategic Information Disclosure

In our analysis thus far, we have exogenously imposed the information structure on the
market and restricted supply-side decisions to prices only. However, as stressed in Sub-
section 3.2, insurers with the ability to observe or estimate the risks faced by an agent
might have an incentive to withhold or share this information with the agent. These
informational asymmetries might affect crucial elements of insurers’ decisions, such as
contract design, information acquisition and disclosure policies. While exploring these
issues is beyond the scope of the paper, we provide a glimpse of the potential insurer
response to information frictions by examining the information disclosure decisions of
a monopolist under risk-based pricing.

Table 4 presents the profit maximizing disclosure policy of the monopolist as a
function of underlying risk p. Consistent with the fact that agents exhibit on average
a positive uncertainty premium at low probabilities and zero or negative uncertainty

premium at high p (see Figure 2), the monopolist chooses to disclose p to the agent at

20These differences may also be due to differences in survey incentives and framing of insurance.
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high risk probabilities. Beyond increasing the profits of the monopolist, such a selective
disclosure policy also has allocative implications, since it increases the average risk of
the insured pool by inducing higher risk consumers to buy insurance, compared to
the case of no disclosure. Although such implications are quantitatively small in a
market where the risk distribution has a very thin right tail, they could be substantial

in insurance markets where larger risks are more prevalent (e.g. health insurance).

Table 4: Information Disclosure under Monopoly

P 2 5 10 20 30 40 50 60 70 80 90
Main Survey no no NO nNO NO NO yes NO yes Nno yes
High-stakes Survey no no no yes no no yes no yes yes 1o

7 Conclusion

Our study uses surveys to uncover key systematic relationships between the determi-
nants of insurance demand, such as the negative correlation between risk aversion and
uncertainty aversion, and quantifies the impact of information frictions on insurance
markets. There are several takeaways from our analysis, which point to policy interven-
tions and methodological changes. Such implications of our analysis acquire particular
relevance given that we find similar patterns across multiple survey and experimental
data sources.

The paper highlights that different types of information frictions affect markets
in different ways. Whereas related work shows that frictions about insurance con-
tracts (e.g., information about coverage, pricing, transaction costs) tend to depress
demand for those contracts (Handel and Kolstad, 2015; Bhargava et al., 2017; Han-
del et al., 2019; Domurat et al., 2019), we show that frictions about risks increase
insurance demand and lead to selection effects, which reduce welfare. This suggests
that friction-mitigation policies aimed at improving welfare need to be tailored to the
specific frictions being targeted.

Our analysis has implications for consumers, insurers and policy-makers. For con-
sumers, uncertainty about risks leads to mis-allocation of insurance and welfare losses.
For insurers and policy-makers, the advent of InsurTech has made data about under-
lying risks available, and there are open questions about how such data should be

used. Our results show that for insurers, there is an incentive to strategically withhold
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risk-related information to increase profits. For policy-makers, introducing policies of
mandatory information disclosure can unambiguously improve consumer welfare.

A large body of work uses observational data to obtain estimates of risk preferences
and engage in policy analysis. Methodologically, our work emphasizes the need to
account for the joint distribution of the demand components to obtain unbiased risk
estimates. In this context, surveys and demand simulation techniques can overcome
limitations inherent to observational data. As such, our paper speaks to the point made
by Stantcheva (2022) about the importance of surveys as a key tool for uncovering
‘invisible’ determinants of demand behavior. We explore this issue in detail in our

companion paper on preference estimation (Gandhi et al., 2022).
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Appendix A Descriptive Statistics

Table A.1 presents the summary statistics of the main sociodemographic variables of
households in the UAS in Surveys 1 and 2.

Table A.1: Descriptive Statistics - UAS

Survey 1 Survey 2

Variable Mean Std. Dev. Mean Std. Dev.
Age 48.34 15.52 50.75 16.24
Female 0.57 0.49 0.58 0.49
Married 0.59 0.49 0.56 0.49
Some College 0.39 0.49 0.37 0.48
Bachelor’s Degree or Higher 0.36 0.48 0.42 0.49
HH Income: 25k-50k 0.24 0.43 0.21 0.41
HH Income: 50k-75k 0.20 0.40 0.19 0.39
HH Income: 75k-100k 0.13 0.34 0.14 0.34
HH Income: Above 100k 0.20 0.40 0.27 0.44
Black 0.08 0.27 0.07 0.26
Hispanic/Latino 0.10 0.29 0.15 0.35
Other Race 0.10 0.30 0.14 0.35
Financial Literacy (range: 0-100) 67.52 22.11 69.79 21.96
No. Individuals 4,442 5,319

Appendix B Measurement Error Correction

This section provides estimates of the correlation between risk and uncertainty premium
that correct for potential biases due to measurement error. To formally show the
problem, let W (I) = W(I) +¢; be the elicited WTP under information I, where &; is
a random variable representing classical measurement error. Accordingly, the elicited
risk premium is given by f(p) = p(p) + €, and the elicited uncertainty premium is
given by (1) = u(I) + er — €,. Assuming that measurement errors are independently
drawn and that they are independent of W (-), the correlation between fi() and fi(p)
is given by

cov(u(I), p(p)) — Var(e,) _
V(Var(u(I) + Var(e; — ,))(Var(u(p) + Var(e,))

corr(i(1), ii(p)) =
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Hence, the numerator is negatively biased while the denominator is biased upwards,
making both the direction and the size of the bias indeterminate.

However, if we have duplicate measures of the risk premium, fi(p) and i%(p) =
1(p) + €% we can use [i%(p) as an instrument for i(p) in a regression of ji(I) on fi(p).
Since errors are independent across measures the measurement error in fi(/), given by

€1 — €p, is independent of the measurement error gg in 4%(p), making the latter a valid

instrument. Accordingly, the regression coefficient B delivers a consistent estimate of
cov(p(1), u(p))

Var(u(p)) , , , . ,
premium, the correlation between the risk and uncertainty premia can be consistently

estimated using

.If, in addition, we have an additional measure fi%(I) of the uncertainty

~ [ cov(fi(p), i (p))
(1), (1))’ @

where corr and cov represent sample correlation and covariance, respectively.

Gillen et al. (2019) exploit the use of duplicate measures or replicas to obtain not
only consistent but also efficient estimates via stacked IV regressions, one per available
replica, with the remaining replicas acting as instruments. They call their approach
an obviously related instrumental variable (ORIV) regression and show how to obtain
consistent correlation estimates and bootstrapped standard errors.

To obtain replicas of risk and uncertainty premia, we take advantage of the fact
that our experimental design elicits subjects’” WTP for insurance for multiple risk
probabilities. Specifically, we use the linear interpolation of risk premium associated
with the probability points adjacent to p as the second measure of u(p). That is, if
p' < pand p” > p are the loss probabilities closest to p in the experimental design, the
replicas of risk and uncertainty premia are given by

corr(u(p), p(I)) =

/

. p" —p p—p
i(p) = p(p) —+ u(p”) ,

—p P
—p

p// p// o
p// p _ p/
~d _ / "
/’L([>_/’L(I>p//_p/+ (I )p//_p/
where I’ and I” represent the unknown risks respectively associated with p’ and p”.
We normalize uncertainty premium by dividing it by range size and perform the linear
interpolation using the normalized premia.

Table B.2 shows the ORIV correlation for probabilities with adjacent probabilities
on both sides (column three). The estimates are of similar magnitude if not slightly
more negative. These results indicate that the negative relationship between risk and
uncertainty premia is not an artifact of measurement error.

?
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Table B.2: Correlation between risk and insurance premia

P correlation® ORIV correlation®
2 -0.312%** -

) -0.291* -

10 -0.276** -0.310"**
20 -0.241+ -0.319***
30 -0.329*** -0.324***
40 -0.256*** -0.353***
50 -0.3477 -0.306***
60 -0.284*** -

70 -0.309*** -

80 -0.267* -

90 -0.276*** -

@ Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

Appendix C High Stakes

This section briefly describes the details of our second survey design and uses it to
replicate the empirical analysis of Section 5.

All 8,815 panel members who were in the sample in 2020 were recruited to com-
plete the survey online, and 7,145 respondents accessed the survey. 1,826 respondents
started but did not complete the survey and are excluded from our analysis. Each
respondent received two questions — one with a precise risk probability and one with a
probability range — in random order. The specific wording of the questions is detailed in
Appendix F.2. We randomly varied risk probability across respondents (generating 11
different groups). Table C.3 provides a summary of decisions presented to respondents.
Unlike Survey 1, Survey 2 was not incentivized.

Figure C.1 presents the average risk premium, normalized by loss size ($5,000). For
probabilities up to 10% agents are significantly risk averse, turning to risk seeking as
risk probability goes up. In terms of magnitudes, risk premium at low probabilities
are about a third of those in survey 1, but still quite large. For instance, a 2% loss
probability elicits a risk premium of about 9%, over four times the actuarially fair price.

The average uncertainty premium at each possible p, normalized by loss size, is
significantly positive at p < 20%, as shown in Figure C.2.

Figure C.3 presents total and partial correlation between risk and uncertainty pre-
mia at each risk probability, which are negative and of similar magnitude to those
found in main survey.
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Table C.3: Summary of Decisions Presented to Respondents, Survey 2

Group (1) Probability (%) (2) Range (%)

1 2 0-4
2 ) 1-9
3 10 1-19
4 20 13-27
) 30 21-39
6 40 28-52
7 20 45-54
8 60 48-72
9 70 61-79
10 80 73-87
11 90 83-97

Notes: Respondents were assigned to one of 11 groups, and
were presented both (1) and (2), in random order.
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Figure C.1: Average Risk Premium (bars represent 95% confidence intervals).
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Figure C.2: Average uncertainty premium (labels denote range size and bars are 95% confidence
intervals).
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Figure C.3: Correlation Coefficients between Risk Premium and uncertainty premium.
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Appendix D Statistical Analysis of WTP

In this section we present the average WTP under certain risk (W(p)) and the uncer-
tainty premium under uncertain risk. We report both averages for the whole sample,
and also distinguishing by whether decisions involved ambiguous ranges. Finally, we
use our incentivized quiz about reducing compound risks, to contrast average WTP by
subjects’ ability to reduce compound lotteries.

Table D.4 presents whole sample averages and reports both whether WTP are dif-
ferent from risk probabilities and whether uncertainty premium is significantly different
from zero using one-sided paired t-tests.

Table D.4: WTP for Insurance - UAS

Group 1 Group 2 Group 3 Group 4
p Wp)* wI)> Wip) pd) Wp) wl) Wp) )
2 28.2%**  2.5%  28.3"* 3.0

(2) (4)
52587 2.8%% 2897 447
(4) (8)
10 28.5™* 3.6 314" 357 314 297 3097 2.3
(18) (14) (8) (4)
20 3417 357 36,87 257 36.67 467 3717 2.0
(14) (4) (24) (8)
30 42,47 3,07
(18)
40 4817 357 49.1% 170
(24) (4)
50 547 -0.6*

60 60.3  2.2%*
(24)
70 66.5*  -0.6
(18)
80 69.87  -0.1
(4)
90 7.9 11
(14)
@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis u(I) > (<) 0:

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
¢ Range sizes in parenthesis.
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Ambiguity Tables D.5 and D.6 show the effect of presenting agents with non-
ambiguous versus ambiguous ranges. There is no clear effect of ambiguity on the
uncertainty premium. Overall, effects seem to be quantitatively of the same order of
magnitude.

Table D.5: WTP for Insurance: Non-Ambiguous Range

Group 1 Group 2 Group 3 Group 4
Wi(p)* ) W(p) uld) Wlp) wpd) Wp) pd)
2 29.2%%  2.3%  28.57* 2.8

(2) (4)
o 25.3"  2.6™  29.2%% 3.4
(4) (8)
10 2v.6* 4.1  32.0™* 29" 320" 2.1 30.1™ 3.0
(18) (14) (8) (4)
20 32.8™* 3.6 37.6™ 1.7t 37.27 4.4 35.9% 2.7
(14) (4) (24) (8)
30 41.57 4.0
(18)
40 48.4* 3.9 49.9™* 1.4
(24) (4)
50 53.0™*  0.03
(8)
60 60.3  3.1"
(24)
70 66.8* 0.0
(18)
80 67.7*  0.8"
(4)
90 78.2%*  -0.8"
(14)
@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis u(I) > (<) 0:

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
¢ Range sizes in parenthesis.

Ability to reduce compound lotteries. Table D.7 shows the average WTP asso-
ciated with the range used in the incentivized question that asked subjects to compute
the underlying failure probability. There are no substantial differences in uncertainty
premia between those who answered correctly and those who did not correctly reduce
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Table D.6: WTP for Insurance: Ambiguous Range - UAS

Group 1 Group 2 Group 3 Group 4
Wi(p)* wp)*> W) ) W) wd) W) pd)
2 27.2% 2.8 28. 1% 3.3

(2) (4)
5 26.27  2.97r  28.77%% 5.4
(4) (8)
10 29.4** 3.1 30.7* 4.1 30.77 247 317 1.67
(18) (14) (8) (4)
20 3547 29"  36.17 3.3 36.17 4.7 38.2%*F  1.2*
(14) (4) (24) (8)
30 43.37* 2.0
(18)
40 A7.87* 3.1 48.3 2.0
(24) (4)
50  5H6.4™*  -1.2*%F
(8)
60 60.3 1.2*
(24)
70 66.3*** -1.2**
(18)
80 71.9% -1.1*
(4)
90 T7.5"  -1.4%
(14)
@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis u(I) > (<) 0:

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
¢ Range sizes in parenthesis.

the range, except for the last 2 ranges, in which those who reduced the range properly
actually exhibit a higher W'TP.
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Table D.7: WTP by Ability to Reduce Compound Lotteries

Correct Incorrect
Decision p  W(p)* wI)® n  W(p) wu() n
Range
3-7 5 22.6"* 2.7 658 34.2* 2.7 247
3-17 10 26.3** 3.3*** 484 37.3** 3.3 417
8-32 20 30.6™* 5.2%* 523 42.4™* 3.9" 539
21-39 30 38.77* 4.0 655 485" 1.2* 406

@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, ¥**p-value < 0.05, ***p-value < 0.01.

b Statistical significance of one-sided paired t-test with null hypothesis p(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

Appendix E Experiment

E.1 Design

The laboratory experiment was conducted at the BRITE Laboratory for economics re-
search and computerized using ZTree (Fischbacher, 2007). Participants were recruited
from a subject pool of undergraduate students at the University of Wisconsin-Madison.
A total of 119 subjects participated in 9 sessions, with an average of 13 subjects par-
ticipating in each session. Upon arriving to the lab, subjects were seated at individual
computers and given copies of the instructions. After the experimenter read the in-
structions out loud, she administered a quiz on understanding (see Appendix F for the
complete instructions and quiz provided to subjects).

Each participant made 52 insurance decisions individually and in private. In each
decision period, the subject was the owner of a unit called the A unit. The A unit
had some chance of failing, and some chance of remaining intact. Intact A units paid
out 100 experimental dollars to the subject at the end of the experiment, while failed
A units paid out nothing. The probability of A unit failure, including the information
available about said probability, was varied in each decision.

In each decision period, we elicited the maximum willingness to pay for full in-
surance using the Becker-DeGroot-Marschak mechanism. Subjects moved a slider to
indicate how much of their 100 experimental dollar participation payment they would
like to use to pay for insurance. Then, the actual price of insurance was drawn at
random using a bingo cage from a uniform distribution on (0,100). If WTP was equal
to or greater than the actual price, the subject paid the actual price, which assured
that the A unit would be replaced if it failed. On the other hand, if WTP was less
than the actual price, the subject did not pay for insurance and lost the A unit if there
was a failure.

We randomized subjects to two different treatments; No Ambiguity group and
Ambiguity group. All subjects faced multiple information environments; in that sense,
our design includes both within- and between- subject components.

We start by explaining the decisions faced by the No Ambiguity group. We divide
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the decisions into 4 different ‘blocks’ of 13 decisions each. In each ‘block’ of decisions, we
asked subjects to state their maximum WTP for an expected rate of failure of between
2% and 98%, as described in Table E.8. The four ‘blocks’ were as follows: 1) Probability
of Loss, which provided full information about the failure rate, 2) Range Small, which
provided a small range of possible probabilities of failure, 3) Range Big, which provided
ranges of greater size, and 4) Multiplicative Risks.?! It was clearly explained that
within the Range blocks, the actual probability of failure would be chosen from within
the range with all integer numbers equally likely. Multiplicative Risks imply a loss
only if both probabilities are realized. As can be noted from Table E.8, each decision
within the block has a corresponding decision with the same expected probability across
information environments for ease of comparison.

Both Multiplicative Risks and Range blocks constitute a decision that involves
solving a compound risk problem. Along the range treatments, we chose Small and
Big range in order to vary levels - Big Range is somewhat more imprecise than Small
range.

The Ambiguity group faced similar decisions to the No Ambiguity group (as denoted
by Table E.8, except that the actual selection of the probability of failure for the Range
‘blocks’ was left ambiguous. Specifically, subjects were told that the actual probability
is within the range but is unknown.

Subjects made decisions one at a time, but had a record sheet in front of them
summarizing the ranges and probabilities for all 52 decisions. To control for any order
effects, we conducted the experiment using 4 different possible orders, assigned at
random to each session: (1, 2, 3, 4); (2, 3,4, 1)’ (3,4, 1, 2) and (4, 1, 2, 3).

Following all 52 decision rounds, subjects also completed a quiz testing their ability
to reduce compound lotteries and a short demographic questionnaire.??

At the end of the experiment, only one of the decisions was selected at random and
paid out, and no feedback on outcomes was given until the end, so we consider each
decision made an independent decision. At the end of the experiment, we first randomly
selected one decision to be the ‘decision-that-counts.” Then, we randomly selected the
actual price of insurance. Finally, we used the reported probability of failure in the
‘decision-that-counts’ to randomly choose whether or not the A unit would fail. All
random selections were carried out using a physical bingo cage and bag of orange and
white balls rather than a computerized system to assure transparency.

Earnings in experimental dollars were converted to US dollars at the rate of 10
experimental dollars = $1. Participation required approximately one hour and subjects
earned an average of about $29.5 each.??

2Tn the experiment itself, these were called ‘Known Failure Rate’ (1), ‘Uncertain Failure Rate’ (2
and 3), and ‘Failure Rate Depends on Environmental Conditions’ (4)

22Qther data subjects consented to provide include administrative data on math entrance exams,
available at the university.

23Tn this paper, we report only on the insurance choice experiment, which was conducted at the be-
ginning of the session. However, subjects stayed to participate in another risk task after the insurance
task was over. The time and earnings reported above exclude the additional task time and payout.
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Table E.8: Experiment Treatments

Decision # (1) Probability of (2) Range (3) Range (4) Multiplicative Risks

(within block) Loss (%) Small (%)  Big (%) 1st; 2nd, (%)
1 2 1-3 0-4 40; 5
2 ) 3-7 1-9 10; 50
3 10 3-17 1-19 40; 25
4 20 16-24 8-32 25; 80
D 30 29-31 21-39 85; 35
6 40 38-42 28-52 20; 80
7 20 46-54 38-62 66; 76
8 60 08-62 48-72 86; 70
9 70 69-71 61-79 75; 93
10 80 76-84 68-92 95; 84
11 90 83-97 81-99 92; 98
12 95 93-97 91-99 99; 96
13 98 97-99 96-100 99; 99

E.2 Risk and uncertainty premium

The experiment confirms the results found in both surveys. Both risk premium and
uncertainty premium are decreasing in risk probability p, as shown in Figure E.4. The
only difference is that subjects in the experiment were significantly less risk averse.
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Figure E.4: Average Risk and uncertainty premia at Different Probabilities.

Informational effects of multiplicative risks are much stronger than those associated
with ranges. Figure E.5 shows the comparison of uncertainty premia for multiplica-
tive risk and range treatments. Whereas the uncertainty premium associated with
multiplicative risks also declines as p goes up, it is still large at p < 80%. A possible
explanation for this disparity is that multiplicative risks are perceived as more complex
and hence agents have a harder time reducing them. Using the incentivized quiz about
reducing both range and multiplicative risks, Table E.12 shows that the inability to
reduce lotteries seems to increase WTP under multiplicative risks. However, they are
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still much larger under multiplicative risks for those who correctly reduce them.
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Figure E.5: uncertainty premium of Big Range and Multiplicative Risk Treatments

E.3 Relationship Between Risk and uncertainty premium

Table E.9 presents the correlation coefficients for different p between risk and uncer-
tainty premia, as well as the ORIV correlation coefficients. To perform the ORIV
correction we use the linear interpolation of adjacent risk premia as a replica of risk
premium. We do not use replicas of the uncertainty premium given the lack of a direct
comparability of uncertainty premium between different multiplicative risks.?*

E.4 Analyisis of WTP

Table E.10 presents the average WTP under certain risk as well as the uncertainty
premium across treatments. The table also reports both whether W (p) is different
from p and whether the uncertainty premium is different from zero according to one-
sided paired t-tests.

Table E.11 shows the comparison of presenting agents with non-ambiguous versus
ambiguous ranges. No clear pattern emerges, with uncertainty premium being some-
times smaller and other times larger under ambiguity.

Finally, we check whether the results might be solely driven by subjects’ lack of
understanding of how to reduce compound lotteries. The next table shows the WTP
and risk premia of subjects that answered correctly an incentivized quiz asking them
to compute the underlying failure probability of some of the above scenarios. There
were six questions in the quiz, three for ranges and three regarding compound risks.
Table E.12 presents the results. While the magnitude of u(I) is higher on average
for those who respond incorrectly, subjects that reduce compound risks still exhibit
significant uncertainty premia, especially under multiplicative risks.
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Table E.9: Correlation between risk and insurance premia — Experiment

Range Multi-Risk
p  correlation® ORIV correlation® correlation ORIV correlation
2 -0.197** - -0.249** -
5 -0.120 -0.059 -0.166™* -0.012
10 -0.214* 0.210 -0.304** -0.333*
20 -0.394** -0.405%* -0.315"* -0.268***
30  -0.567** -0.499 -0.388*** -0.301**
40 -0.203** -0.428* -0.239*** -0.192%
50  -0.401* -0.299** -0.378** -0.366***
60  -0.240"** -0.289** -0.3477* -0.254*
70 -0.374* -0.299** -0.372%* -0.373**
80  -0.388*** -0.425%* -0.402** -0.373**
90  -0.459*** -0.529** -0.525*** -0.530***
95  -0.538*** -0.596*** -0.539*** -0.529**
98  -0.569*** - -0.587** -

@ Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

Table E.10: WTP for Insurance

Range Multi-Risk

p Wip)* p)’ (size) p(I) (size) p(l)

2 3.98* 0.14 (2) 1.29 (4) 6.74*
5 5.51 2.55* (4) 537 (8) 10.88***
10 13.38**  2.70"* (14) 5.20™* (18) 11.28**
20 2327 094 (8) 3.2 (24) 12.23**
30 31.38 -0.51 (2) 211 (18) 9.41**
40 3894  1.78* (4) 541 (24) 13.88***
50  50.29 -0.45 (8) 1.53 (24) 9.47*
60  58.11 0.83 (4) 0.92 (24) 9.10**
70 65.80**  1.68 (2) -0.08  (18) 7.86™*
80 75.58  -1.66 (8) -1.52 (24) 3.60*
90 82.92* -1.34* (14) -1.19 (18) 2.05
95 86.61"* -1.29 (4) 0.57 (8) 1.25
98 89.04**  -0.42 (2) -0.80 (4) 1.29

@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

b Statistical significance of one-sided paired t-test with null hypothesis p(I) > (<) 0:
*p-value < 0.10, ¥**p-value < 0.05, ***p-value < 0.01.

24Not having a replica for the uncertainty premium implies that the ORIV correlation is consistent
as long as the variation in each replica of the risk premium due to measurement error is identical
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Table E.11: WTP by Ambiguity

Non-ambiguous Range Ambiguous range
p W) p)’ (size) p(l) (size) W(p)  pl) (size) p(l)  (size)
2 3.48  -0.45  (2) -0.05 (4) 4.46* 0.15 (2) 2.56* (4)

5 477 241 (4)  355%  (8) 621 267 (4 710" (8)
10 1240 321 (14) 440 (18) 1431 221 (14) 597" (18)
20 2221 179" (8)  259° (24) 24.28*  0.13  (8)  3.92%  (24)
30 3105 -021 (2) 128 (18) 3169  -080  (2) 290 (18)
40 38.05 255  (4) 590" (24) 3979 105  (4) 4957 (24)
50 5028  -0.97 (8) 024 (24) 5031 005 (8 275  (24)
60 5684 0.62* (4) 147 (24) 5931 103 (4 041  (24)
70 6397 1970 (2) 031 (18) 6754 141 (2)  -044 (1)
80 72.72** -0.12 (8)  -0.69 (24) 7830 -3.13"* (8)  -231  (24)
90 80.14™* -1.19 (14) -048 (18) 85.56™ -1.49  (14) -1.87 (18)

—~
= 0o
N4

95 83.26™*  0.57 (4) 2.02 89.79*  -3.07** (4) -0.80
98 86.74** -0.33 (2) 0.05 91.23**  -0.51 (2) -1.61

@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ¥***p-value < 0.01.

b Statistical significance of one-sided paired t-test with null hypothesis u(I) > (<) 0
*p-value < 0.10, **p-value < 0.05, ¥***p-value < 0.01.

—~
= 0o
~— —

Table E.12: WTP by Ability to Reduce Compound Lotteries - Lab

Correct Incorrect

Decision p  Wp* ()P n  W(p) p(l) n
Range

0-4 2 318 0.31 105 10.00 8.64 14
3-17 10 13.027 2.13* 88  14.39* 4.32% 31
61-79 70 64.56*** 0.32 89  69.47 -1.24 30
Multi-Risk

10; 50 5 4.69 9.50** 84  7.49 14.20"* 35
50; 80 40 37.61 1147 77 41.38 18.31%* 42
95; 84 80 73.88* 410 50 76.81* 3.23* 69

@ Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

b Statistical significance of one-sided paired t-test with null hypothesis u(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

(Gillen et al., 2019).
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Appendix F Instructions

F.1 Survey 1

You can earn up to $10 for the next part. The amount you earn depends on the
decisions you make, so you should read carefully!

We will ask you to make decisions about insurance in a few different scenarios. This
time, at the end of the survey, one of the scenarios will be selected by the computer
as the “scenario that counts.” The money you earn in the “scenario that counts” will
be added to your usual UAS payment. Since you won’t know which scenario is the
“scenario that counts” until the end, you should make decisions in each scenario as if
it might be the one that counts.

We will use virtual dollars for this part. At the end of the survey, virtual dollars
will be converted to real money at the rate of 20 virtual dollars = $1. This means that
200 virtual dollars equals $10.00.

Each Scenario

e You have 100 virtual dollars
e You are the owner of a machine worth 100 virtual dollars.

e Your machine has some chance of being damaged, and some chance of remaining
undamaged, and the chance is described in each decision.

e You can purchase insurance for your machine. If you purchase insurance, a
damaged machine will always be replaced by an undamaged machine.

e At the end, in the scenario-that-counts, you will get 100 virtual dollars for an
undamaged machine. You will not get anything for a damaged machine.

Paying for Insurance

You will move a slider to indicate how much you are willing to pay for insurance,
before learning the actual price of insurance. To determine the actual price of insurance
in the “scenario that counts”, the computer will draw a price between 0 and 100 virtual
dollars, where any price between 0 and 100 virtual dollars is equally likely.

If the amount you are willing to pay is equal to or higher than the actual price,
then:

e You pay for the insurance at the actual price, whether or not your machine gets
damaged

e If damage occurs, your machine is replaced at no additional cost
e [f there is no damage, your machine remains undamaged
e You get 100 virtual dollars for your machine

e That means you would earn 100 virtual dollars (what you start with) PLUS 100
virtual dollars (amount you get for machine) MINUS the price of insurance.
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If the amount you are willing to pay for insurance is less than the actual price, then:

e You do not pay for the insurance

e [f damage occurs, your machine is damaged and you do not get any money for
your machine. That means you would earn 100 (what you start with) but you
would not earn anything for your machine.

e [f there is no damage, your machine remains undamaged and you get 100 virtual
dollars. That means you would earn 100 virtual dollars (what you start with)
PLUS 100 virtual dollars (amount you get for the machine).

This means that the higher your willingness to pay, the more likely it is that you
will buy insurance.

BASELINE BLOCK: ALL TREATMENTS

Remember: You can earn up to $10 for the next part. The amount you earn depends
on the decisions you make, so you should read carefully!

KNOWN DAMAGE RATE: The chance of your machine being damaged is 5% [10,
20, etc|.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and you will get 100
virtual dollars for it. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and you will not get any money for it.

| Slider moves from 0 to 100 in integer increments. |

CONFIRMATION MESSAGE

You have indicated you are willing to pay up to X for insurance. Continue? Y / N

RANGE BLOCK: AMBIGUOUS RANGE

UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is
between 3% and 7% [8-32 etc|. The exact rate of damage within this range is unknown.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

| Slider moves from 0 to 100 in integer increments. |

RANGE BLOCK: NON-AMBIGUOUS RANGE

UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is
between 3% and 7% [8-32 etc|. All damage rates in this range are equally likely.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.
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Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

| Slider moves from 0 to 100 in integer increments. |

QUESTION

Before we finish, we’d like you to answer a final question. You will receive $1 for a
correct answer.

Suppose a machine has a chance of being damaged between X and Y%. All damage
rates in this range are equally likely. What is the average rate of damage for this
machine?

The ranges to use in the question are: Group 1: range 3-7%; group 2: range 3-17%;
group 3: 8-32%; group 4: 21-39%

END SCREEN

Thank you for participating!

The computer selected scenario X to be the “scenario that counts”

The computer selected the price of X virtual dollars for the insurance. Since the
maximum you were willing to pay for insurance was X virtual dollars, you [bought /did
not buy| insurance at the price of X.

The likelihood of damage for scenario X was [X%/between X% and Y%|. Your
machine [was / was not| damaged and you got | nothing / amount | for your machine.

Based on the scenario the computer selected, your earnings for this part are X
virtual dollars.

Converted to real money, your earnings are $X (X virtual dollars divided by 20).

You also earned $0 / $1 in the previous question.

A total of $X will be added to your usual UAS payment.
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F.2 Survey 2

Two questions were added to an existing UAS survey fielded in March, 2020, which
focused mainly on perceptions and behaviors related to the Coronavirus. Given that
this other survey may have induced some background risk, our questions were asked
(randomly) either at the beginning or end of the survey. We do not find a significant
difference in responses across the two orders; hence, we pool them in our analysis.
The questions were as follows:

Question 1: Suppose you already bought a used car. After inspecting the car, an
independent agency tells you that the chance the car may be defective and in the first
year is 2%. If the car is defective, your only option will be to fix it and you will need
to pay $5,000 to do this.

How much would you pay for an insurance policy that would give you back the full
$5,000 to fix the car?

[ Slider moves from 0 and 35,000 in integer increments. |

Question 2: Suppose you already bought a different used car. After inspecting
the car, an independent agency tells you that the chance the car may be defective in
the first year is between 0 and 4%. All failure rates in this range are equally likely.
If the car is defective, your only option will be to fix it and you will need to pay $5,000
to do this.

How much would you pay for an insurance policy that would give you back the full
$5,000 to fix the car?

[ Slider moves from 0 and 35,000 in integer increments. |

F.3 Laboratory Experiment: Order 1, No Ambiguity

Instructions for different orders are the same, except for the order of presentation.

In this part, we will use experimental dollars as our currency. At the end of
the experiment, your experimental dollars will be converted to US dollars and paid
out to you in CASH with the following conversion rate:

10 experimental dollars = $1. This means 100 experimental dollars = $10.

You will start with 100 experimental dollars — this is your participation payment
for this part of the experiment ($10).

You will make a series of 52 different decisions. Once all decisions have been
made, we will randomly select one of those to be the decision-that-counts by drawing
a number at random from a bingo cage with balls numbered from 1 to 52. Note, that
since all decisions are equally likely to be chosen, you should make each decision as if
it will be the decision-that-counts. Please pay close attention because you can earn

44



considerable money in this part of the experiment depending on the decisions you
make. You should think of each decision as separate from the others.

Each Decision Period

In each decision period, you will be the owner of a unit called an A unit. Your A
unit has some chance of failing, and some chance of remaining intact. The probability
of failure differs for different decision periods, so you should pay careful attention
to the instructions in each decision period. In each decision period, you will have
the opportunity to purchase insurance for your A unit. You can use up to 100
experimental dollars from your participation payment to purchase the insurance. If
you purchase insurance, a failed A unit will always be replaced for you. At the end of
the experiment, in the decision-that-counts, intact A units (those that have not failed)
will pay out 100 experimental dollars. Failed A units will pay out 0 experimental
dollars.

Paying for Insurance

You will indicate how much you are willing to pay for insurance in each decision by
moving a slider. You will indicate your willingness to pay before learning the actual
price of insurance for that round. To determine the actual price of insurance in the
‘decision that counts’, a number will be drawn at random from a bingo cage with
numbers from 1 to 100. Any number is equally likely to be drawn.

If the maximum amount you were willing to pay for insurance is equal to or higher
than the actual price of insurance, then: You pay for the insurance at the actual price,
whether or not a failure occurs. If a failure occurs, your A unit is replaced at no
additional cost to you. If there is no failure, your A unit remains intact. Your A unit
always pays out 100 experimental dollars.

If the maximum amount you were willing to pay for insurance is less than the actual
price of insurance, then: You do not pay for the insurance. If a failure occurs, your A
unit will fail and you get no experimental dollars. If there is no failure, your A unit
will remain intact and pays out 100 experimental dollars.

If you indicate you are willing to pay 0 experimental dollars for insurance, then
you will never buy the insurance.

Failure of the A unit

After learning whether you have purchased insurance, you will find out whether
your A unit has failed or not in the ‘decision that counts’. The likelihood of failure
depends on the specific directions in each decision. In some decisions, the likelihood
of failure is known, and in some decisions, the likelihood of failure is uncertain. Let’s
go through some examples:

Known Failure Rate

In decisions with a known failure rate, the failure rate will be given to you. For
example, suppose the failure rate is 15%. To determine whether your A unit will fail,
we will place 100 balls in this bag. 15 will be orange and 85 will be white. Then, you
will draw a ball at random. If the ball you drew is orange, your A unit will fail. If it
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is white, your A unit will remain intact (will not fail).

As another example, suppose the failure rate is 50%. To determine whether your
A unit will fail, we will place 100 balls in this bag. 50 will be orange and 50 will be
white. Again, if the ball you drew is orange, your A unit will fail and if it is white
your A unit will remain intact (will not fail). In this type of decision, drawing an
orange ball means your A unit fails.

Uncertain Failure Rate

In decisions with an uncertain failure rate, the failure rate will be given to you as a
range. For example, suppose the failure rate is in the range 5% to 25%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 5 and 25
of the balls will be orange, and the remaining balls will be white. All failure rates in
this range will be equally likely - a separate bingo draw will determine the number of
orange balls before they are put in the bag. This means it is equally likely that there
are 5, 6, 7...through 25 orange balls in the bag. Then, you will draw a ball at random.
If the ball you drew is orange, your A unit will fail. If it is white, your A unit will
remain intact (will not fail).

As another example, suppose the failure rate is in the range 40%-60%. To
determine whether your A unit will fail, we will place 100 balls in this bag. Between 40
and 60 of the balls will be orange, and the remaining balls will be white. All numbers
in this range will be equally likely. Again, if the ball you drew is orange, your A unit
will fail and if it is white your A unit will remain intact (will not fail). In this type of
decision, drawing an orange ball means your A unit fails.

Failure Rate Depends on Environmental Conditions

In decisions where the failure rate depends on environmental conditions, the A
unit may only fail if environmental conditions are poor, but not if the environmental
conditions are good. The likelihood of poor environmental conditions and the actual
likelihood of failure are known and given to you. For example, suppose that the chance
of poor environmental conditions is 50%. If the environment is poor, then there is a
30% chance of failure of the A unit. This means that we will have 2 bags with 100
balls each. In the first bag, we will put 50 orange balls and the remaining balls will
be white. You will draw a ball at random from the first bag. If the ball is white, the
environmental conditions are good and your A unit will not fail. If the ball is orange,
the environmental conditions are poor and you will draw from the second bag. In the
second bag, we will put 30 orange balls and the remaining balls will be white. You will
draw a ball at random from the second bag. If the ball you drew from the second bag
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose that the chance of poor environmental conditions
is 70%. If the environment is poor, then there is a 50% chance of failure of the
A unit. This means that the first bag will have 100 balls - 70 orange and the
remaining white. You will draw a ball from the first bag at random. If it is white,
your A unit will remain intact. If it is orange, we will prepare the second bag.
The second bag will have 100 balls - 50 orange and the remaining white. You will
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draw a ball from the second bag at random. If the ball you drew from the second
bag is orange, your A unit will fail. If it is white, your A unit will remain intact
(will not fail). In this type of decision, both balls must be orange for your A unit to fail.

In summary

Each decision is equally likely to be the decision-that-counts. Therefore you should
pay close attention to each decision you make. The likelihood of failure may be different
in each decision period. Pay close attention and reference the instructions if you need
to. Intact A units pay out 100 experimental dollars at the end of the experiment.
Failed A units pay out nothing. In each decision period, you will decide how much you
are willing to pay for insurance. If your willingness to pay is greater than or equal to
the actual price of insurance, then you will buy insurance. If your willingness to pay
is less than the actual price of insurance, then you will not buy insurance. This means
that the higher your willingness to pay, the more likely it is that you will buy insurance.
Insurance guarantees that your A unit will be replaced at no cost and will pay out 100
experimental dollars. If you bought insurance, you pay for insurance whether or not
your A unit fails.

Before you begin making decisions, you will answer the next set of questions on
your screen to confirm your understanding. You may refer back to instructions at any
time. Please answer the questions on your screen now.

Your decisions

You will now have 30 minutes for this part. Please take your time when making
each of the 52 decisions. There will be a 5-second delay before you can submit each of
your decisions on the screen. Please also record your decisions on the record sheet.

F.4 Laboratory Experiment: Order 1, Ambiguity in Ranges

Instructions are the same as those without ambiguity, except for the "uncertain failure
rate’ scenario. We provide just the instructions that are different from Appendiz F.3.

Uncertain Failure Rate In decisions with an uncertain failure rate, the fail-
ure rate will be given to you as a range. For example, suppose the failure rate is in
the range 5% to 25%. To determine whether your A unit will fail, we will place 100
balls in this bag. Between 5 and 25 of the balls will be orange, and the remaining
balls will be white. The exact number of orange balls is unknown and could be any
number between 5 and 25. Then, you will draw a ball at random. If the ball you drew
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose the failure rate is in the range 40%-60%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 40 and 60 of
the balls will be orange, and the remaining balls will be white. Again, if the ball you
drew is orange, your A unit will fail and if it is white your A unit will remain intact
(will not fail). In this type of decision, drawing an orange ball means your A unit fails.
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