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Abstract

This paper studies belief heterogeneity in a benchmark competitive asset market: a
market for Arrow-Debreu securities. We show that differences in agents’ beliefs lead to a
systematic pricing pattern, the favorite longshot bias (FLB): securities with a low payout
probability are overpriced while securities with high probability payout are underpriced.
We apply demand estimation techniques to betting market data, and find that the ob-
served FLB is explained by a two-type population consisting of canonical traders, who
hold virtually correct beliefs and are the majority type in the population (70%); and noise
traders exhibiting significant belief dispersion. Furthermore, exploiting variation in public
information across markets in our dataset, we show that our belief heterogeneity model
empirically outperforms existing preference based explanations of the FLB.

JEL Classification: C13, C51, D40, G13, L00.
Keywords: heterogeneity, prospect theory, favorite-longshot, rational expectations,
demand estimation, random utility, noise traders, risk preferences.

1 Introduction

There are two important issues that have gained prominence in the study of financial
markets. First, there is a growing consensus that the sheer trading volume we observe
cannot be explained without resorting to information-driven trade (Cochrane, 2007), i.e.,
belief heterogeneity is likely a major source of gains from trade in financial markets. Second,
there is also a growing body of evidence that documents “anomalies” in prices (see e.g.,
Keim, 2008), i.e., systematic patterns where prices do not accurately reflect the underlying
fundamentals of securities.
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In this paper we show these two issues are closely related: belief heterogeneity can serve
as a natural foundation for pricing patterns that depart from the predictions of standard
neoclassical theory. We focus on a particular pricing ‘anomaly’, known as the favorite-
longshot bias (FLB), which has been found in a number of market settings, particularly in
betting markets.1 Betting markets are important for several reasons. Chief among them is
that they represent real world Arrow-Debreu security markets, which play a foundational
role in the theoretical study of financial markets. In addition, unlike in other markets, we
observe ex-post security returns which, combined with the availability of large datasets,
allows tracing prices to fundamentals.2 There is a long empirical literature that widely
documents the existence of the FLB in these markets –securities with a large probabil-
ity of payout (favorites) yield higher average returns than securities with a small payout
probability (longshots), with observed disparities in returns as high as 200%. Because of
this, the FLB is often viewed as evidence against the standard notion of agents being risk
averse, expected utility maximizers with correct beliefs (or rational expectations) about
the underlying fundamentals (Thaler and Ziemba, 1988). This has led to two main al-
ternative approaches to explain the observed pattern of returns, both of them based on
departures from standard preferences while retaining rational expectations: one approach
is to use convexity of utility, i.e, risk love (Quandt, 1986), while the other approach de-
parts from expected utility theory altogether and uses non-linear probability weighting,
i.e., rank dependent utility or cumulative prospect theory preferences (Thaler and Ziemba,
1988; Jullien and Salanié, 2000; Snowberg and Wolfers, 2010).

In contrast to these preference based approaches, this paper studies the behavior of
asset prices when agents have heterogeneous beliefs. In particular, we use the standard
Arrow-Debreu (A-D) security market setting and explore whether belief heterogeneity,
apart from rationalizing trade, can also explain the existence of the FLB. We then inves-
tigate whether our belief heterogeneity explanation can be empirically distinguished from
existing preference based explanations of the FLB using data from US racetrack betting.
Our main findings can be summarized as follows.

First, we theoretically show that belief heterogeneity among risk neutral traders with
finite wealth naturally leads to the FLB in competitive A-D security markets: as long as
the correct beliefs about the true payout probabilities lie in the support of the population
belief distribution, favorites will be underpriced and longshots overpriced.

1There is evidence of the FLB in betting and prediction markets (see e.g., Griffith (1949); Sauer (1998);
Jullien and Salanié (2000); Snowberg and Wolfers (2010) for a review), option markets (where the FLB is
associated to the “volatility smile”), and in some derivative markets (Tompkins et al., 2008).

2An additional key feature of betting markets is the absence of differences in liquidity or transaction
cost across securities. This is in contrast with other markets where pricing patterns are closely associated
to differences in liquidity and trading costs (see e.g. Sadka and Scherbina (2007) and references therein).
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Second, we present a framework for estimating belief heterogeneity in A-D markets
using aggregate data on prices and ex-post returns. In particular, we show that our the-
oretical model of belief heterogeneity can be expressed as a random utility model that
we are able to non-parametrically identify from variation in prices and ex-post returns in
the data. We then provide an estimation strategy by assuming that the random utility
component follows a variance mixture of logit models. The variance mixture allows us
to identify different types of agents in the underlying population as sub-populations with
different dispersion in beliefs. Using betting market data from horse racing in the U.S., we
find that a two-type population of risk-neutral traders, in which the prevalent type (about
70% of agents) holds virtually correct beliefs with minimal belief dispersion and the other
type exhibits higher belief dispersion, explains the observed pricing pattern remarkably
well. This provides suggestive evidence of the existence of two types of agents in these
markets that trade in equilibrium - perfectly and imperfectly informed or noise traders.

Finally, given our empirical findings, we compare our belief heterogeneity hypothesis
to existing preference based explanations for the FLB. We do so first by parametrically
comparing our two-type belief model with a representative agent whose preferences follow
cumulative prospect theory, which is a leading preference explanation in the literature. In
particular, we use the same specification of cumulative prospect theory as the empirical
analysis of Jullien and Salanié (2000), which has the same number of parameters as our
two-type beliefs model and thus serves as a convenient baseline for comparison. We fail to
reject the hypothesis that the predicted probabilities emerging from our model equal the
true non-parametric probabilities in the data, but find a significant rejection for cumulative
prospect theory. Model comparisons using Vuong non-nested hypotheses tests also supports
the better explanatory power of the beliefs model.

We then aim at providing a more general contrast between our approach and existing
preference explanations (which may include heterogeneity of preferences). The fundamen-
tal distinction between beliefs and preferences as a driver of choice is that beliefs should
respond to information whereas preferences should not. We exploit this distinction by us-
ing a source of variation in the amount of information at races. Specifically, races that are
run at the same track on the same day take two different forms, maiden and non-maiden.
Because only relatively experienced horses can participate in non-maiden races and new
horses (without any racing history) participate in maiden races, traders in non-maiden
races have access to richer information about the value of the A-D securities associated to
each horse. We find that this difference in the information structure across race types is
starkly reflected in prices: maiden races exhibit a much more pronounced FLB as com-
pared to non-maiden races. We estimate our model on each race subsample and show that
it explains this pricing difference in the natural way: the same proportions of informed and
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noise traders are present in both types of races, but beliefs are more dispersed in the low
information races. Preference based theories that rely on homogeneous correct beliefs, on
the other hand, cannot easily account for the price differences across information environ-
ments: they would require a dramatic change in agent preferences across races, which we
also show cannot be reconciled by self-selection into races.

What is the intuition for why belief heterogeneity explains the FLB? Belief heterogene-
ity can generate a dramatic disparity in returns even when beliefs are heavily concentrated
around correct beliefs because the FLB, like many pricing puzzles observed in financial
markets, is driven by behavior at the tails of the underlying value distribution: disparity
in expected returns becomes most apparent for securities with payout probabilities less
than 1%. Accordingly, a little dispersion in beliefs suffices to induce enough demand on
those longshots to generate substantial overpricing in equilibrium. For example, in our
data, the average security has over twice as high an expected return as compared to ex-
treme longshots that payout less than 1% of the time. In our estimated model, only roughly
5% of agents would prefer these longshots over the average security. But this small demand
is sufficient to generate the observed overpricing.

Our findings highlight the potentially misleading inferences that can be drawn from
representative agent models. Although a representative agent may rationalize the aggregate
demand of a population of heterogeneous agents, her preferences need not reflect those in
the population in any meaningful sense. For example, in our model, the modal behavior
is well captured by the textbook rational expectations, risk neutral agent. In contrast, a
representative agent exhibits non-standard preferences or beliefs to explain the same data.

Related Literature Our theoretical model is related to existing models linking belief
heterogeneity to the FLB, notably the competitive model of Ali (1977) and the asymmetric
information approach of Ottaviani and Sorensen (2006, 2010), but also the work of Shin
(1991, 1992) and Potters and Wit (1996). The main difference between our approach and
the existing literature is our focus on behavior at the tails of the value distribution, where
the FLB empirically arises. In contrast, existing research typically defines the FLB for
the whole range of values, e.g., by predicting returns to be strictly increasing in payout
probabilities. Accordingly, we are able to substantially weaken the conditions under which
the FLB arises. In addition, unlike Ottaviani and Sorensen (2006, 2010), our goal is not
to provide an informational foundation to heterogeneous posterior beliefs in asset markets,
but rather find general conditions on the distribution of such beliefs that lead to the FLB.

Our work is also related to a few papers showing that asset prices in a population
of agents with heterogeneous beliefs need not “represent” the underlying distribution of
beliefs. In particular, Manski (2006) shows that in a competitive, binary A-D security
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market, the equilibrium price does not reflect the average opinion in the population. In
the same setting, Ottaviani and Sorensen (2012) show that market prices systematically
under-react to new information relative to the Bayesian agents in the population. Our
results evoke a similar message in that we highlight the potentially misleading inferences
that can be drawn from representative agent models. Nevertheless an important difference
between our paper and these stems from the fact that our model links the distribution
of beliefs to the underlying fundamental probabilities, which it is needed to explain the
FLB. By contrast, these papers do not model the relationship between between beliefs and
fundamentals and focus on the aggregation of opinions rather than on the FLB.

Importantly, this paper adds a novel dimension to the empirical literature on the FLB,
which, to date, has emphasized preference based explanations (Jullien and Salanié, 2000;
Snowberg and Wolfers, 2010; Golec and Tamarkin, 1998). Methodologically, our estima-
tion strategy builds on the work of Jullien and Salanié (2000), who propose a maximum
likelihood framework to estimate representative agent preferences using data on prices and
ex-post returns. We add heterogeneity to this framework and show that the resulting ran-
dom utility model can be non-parametrically identified. A key feature of our approach is
that randomness arises from belief heterogeneity, and belief based trade has not yet been
explored as an empirical alternative. Relatedly, our finding that the magnitude of the FLB
changes across races characterized by different information structures appears to be a new
contribution to the literature on betting and financial markets.

The recent work by Chiappori et al. (2009, 2012) also add heterogeneity to the frame-
work of Jullien and Salanié (2000) but from the perspective of preferences rather than
beliefs. There are at least two important differences between their paper and our beliefs
approach. First, while the discrete choice assumption on bettor behavior is without loss of
generality in our model because we use risk neutral agents, it is imposed as a restriction
in their setup, effectively preventing risk averse agents from constructing portfolios of bets
to reduce their exposure to risk. Second, our empirical model of belief heterogeneity is
isomorphic to a model of horizontally differentiated demand (with a margin of indifference
between any two assets) whereas their empirical model of preference heterogeneity in risk
tastes is isomorphic to a vertically differentiated demand model (with a margin of indif-
ference only between two assets with adjacent prices). This gives rise to rather different
identification and estimation strategies. Nevertheless, they also find that standard risk
preferences cannot easily explain the US racetrack betting data even after accounting for
preference heterogeneity, which is thus complementary to our findings.

The plan of the paper is as follows. In Section 2, we describe the market and characterize
the demand of a risk neutral agent. In Section 3, we introduce belief heterogeneity and
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show that it produces the FLB in equilibrium. In Section 4, we describe the dataset
and illustrate the observed price pattern. We show in Section 5 how to move from the
theory to an empirical framework for measuring heterogeneity. In Section 6, we describe
our estimation results, while we compare our approach to the leading preference based
alternatives in Section 7. Section 8 concludes.

2 The Market

We consider a competitive market for n Arrow-Debreu securities. Security i pays $1 if out-
come i takes place. Before the market opens, nature determines the state p = (p1, . . . , pn) ∈
int∆n−1, where int∆n−1 is the interior of the (n − 1) dimensional simplex and pi is the
probability that outcome i is realized. That is, ∆n−1 is the set of all possible probability
distributions and the state p� 0 is a particular probability distribution over the n possible
outcomes associated to the A-D securities.

Let ρi denote the price of security i. We allow for the possibility of positive transaction
costs represented by a fraction τ ≥ 0 of each dollar invested in the market that the
institution keeps for its own profit. In this context, the expected gross return of investing
$1 in security i = 1, . . . n is given by

ERi = (1− τ)
pi
ρi
, (1)

and the expected net return is ERi−1. Accordingly, securities that are underpriced relative
to their true chance of yielding returns have a higher expected return as compared to
securities that are overpriced.

The market consists of a population T = [0, 1] with a continuum of risk neutral agents
with finite endowments. Assume for the moment that there are no transaction costs (τ = 0)
and that the outside option yields zero net returns given agent’s beliefs. The demand of
agent t ∈ T is a bundle (x1, · · · , xn) such that

∑
xi ≤ wt, where xi ≥ 0 is the amount

invested on security i, and wt > 0 is the dollar endowment of the agent.
Due to risk neutrality, the demand for security i of any agent t with well-defined

posterior beliefs, denoted by (π1t, · · · , πnt), is determined by the relative comparisons of
subjective expected returns, given by πit/ρi, i = 1, · · · , n. That is, agent t will invest on
the security i if it yields the highest subjective return, i.e., if πit/ρi > πjt/ρj for all j 6= i.

We assume risk neutrality for two reasons. First, unlike risk aversion, it rationalizes the
discrete choice of investing all the endowment in one of the securities, rather than hedging
or investing only a fraction of it. This is important given that most empirical studies of
the FLB take a discrete choice approach due to the fact that endowments are not observed
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(see for instance Jullien and Salanié (2000), Snowberg and Wolfers, 2010). Second, people
tend to be risk-neutral when stakes are low (e.g. Bombardini and Trebbi, 2010), as it is
often the case for most traders in betting markets. Nonetheless, we allow for alternative
risk attitudes in our estimation and find that, while introducing a risk aversion parameter
improves the empirical fit, the absolute risk aversion coefficient is virtually zero in the
presence of belief heterogeneity (see Section 6).

Let rit = pi/πit, which reflects agent t’s relative deviation from correct beliefs about
security i. The next lemma shows that the demand of agent t for security i can be char-
acterized instead in terms of the objective expected returns and a vector of indifference
ratios, given by rit/rjt for j 6= i: the agent is indifferent between security i and j whenever
the ratio of expected returns ERi/ERj is equal to the indifference ratio rit/rjt.

Lemma 1. There exists a vector rt = (r1t, ..., rnt) > 0 with rit = pi/πit such that, for all
(ρ1, . . . , ρn)� 0 and all i = 1, . . . , n, the demand of a risk neutral agent t satisfies

qit(ER1, . . . , ERn) =


wt

ERi
ERj

> rit
rjt
∀j 6= i

{x : x ≤ wt} ERi
ERj
≥ rit

rjt
∀j, ERiERj

= rit
rjt

some j 6= i

0 ERi
ERj

< rit
rjt

some j 6= i,

and ∑
i

qit(ER1, . . . , ERn) ≤ wt,

which holds with equality if ERi
ERj
6= rit

rjt
for some i, j.

Proof. In the Appendix.

Notice that an agent with correct beliefs has indifference ratios equal to one for all i, j.
Likewise, if an agent has an indifference ratio r1t/r2t = 2, then asset 1 would have to pay
twice as high objective expected returns as asset 2 for the agent to be indifferent between
the two (thus the agent either seriously overestimates the probability of asset two paying
off, or underestimates asset 1).

There are two advantages of working with objective returns and indifference ratios
rather than dealing directly with prices and subjective beliefs. First, the fact that indif-
ference ratios reflect relative differences with respect to the true underlying payout proba-
bilities allows us to define (idiosyncratic) belief heterogeneity in terms of deviations from
correct beliefs (see Assumption 1 below). Second, the indifference conditions in Lemma 1
readily lead to the random utility model we use later in our empirical analysis.
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Finally, let si be security i’s market share, i.e., the amount invested on security i relative
to the total (finite) amount invested in the market. Market clearing implies that prices
equal market shares, as long as agents, when indifferent between investing or not, choose to
invest either all their endowment or nothing.3 It is worth noting that, by definition, prices
are equal to shares in parimutuel markets, as are the markets comprising our dataset.

3 Belief Heterogeneity and Prices

In a standard representative agent model, traders are homogeneous in terms of beliefs
and preferences. In particular, they hold correct posterior beliefs about the state of the
world. We call such (risk-neutral) agents canonical traders, and their individual demand
is characterized by rt = (1, . . . , 1). In this context, the only trading equilibrium outcome
is ERi = ERj for all i, j, since otherwise the market does not clear.4 That is, there do not
exist any gains from trade in this economy and agents are indifferent between investing in
any of the securities or staying out of the market and thus such equilibrium is not robust
to the introduction of transaction costs.

Now consider introducing gains from trade in this baseline model by letting agents
exhibit differences in posterior beliefs, i.e., heterogeneity in indifference ratios. Let the
mass function of rt be given by the conditional probability measure P [· | p, θ], which
depends both on the state of the world p and possibly on other characteristics of the
market θ ∈ Θ. We only require that there is always a positive mass to “both” sides of the
canonical trader –this avoids the no-trade trap discussed above. To capture this condition,
given z ∈ Rn−1+ , let

Li[z | p, θ] = P

[(
rit
r1t
, . . . ,

rit
ri−1t

,
rit
ri+1t

, . . . ,
rit
rnt

)
� z | p, θ

]
, for i = 2, · · · , n− 1,

and define L1 and Ln in a similar fashion. Li[z | p, θ] represents the mass of agents with
indifference ratios associated to security i lower than z, i.e., ri/rj < zj for j 6= i. For
instance, Li[(1, · · · , 1) | p, θ] is the mass of agents that strictly prefer i over any other

3Market clearing means the supply of dollars equals the demand of dollars in each of the possible n
outcomes. This happens if and only if

qi
ρi

= (q1 + · · ·+ qn) ⇐⇒ ρi = si =
qi

q1 + · · ·+ qn
(∀i),

where qi represents the aggregate investment in dollars on security i. If a mass of agents is indifferent
between investing in some securities and staying out of the market, and they invest only a fraction of their
endowment then the supply of dollars may be higher than the total investment in the market, in which
case some agents are short-selling some of the securities.

4If ERi > maxj 6=iERj for some i then all traders invest in security j, leading to ρi = 1 and ρj = 0 for
all j 6= i, implying ERj > ERi, a contradiction.
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security when expected returns are equal across securities. In this context, we assume that
there is enough heterogeneity so that demand for security i is bounded away from 0 and 1
when τ = 0 and ERi = 1 for all i = 1, · · · , n. That is, there is minimal “liquidity” at fair
prices regardless of the market characteristics (p, θ).

Assumption 1. [Idiosyncratic belief heterogeneity] Li[(1, . . . , 1) | ·] is bounded away from
zero for i = 1, . . . , n.

It is worth emphasizing that this assumption allows for the support of Li to converge
to a single point as pi → 0, as long as all the mass is not concentrated at (1, · · · , 1) when
pi > 0. For instance, Li could have full support in [1− ε, 1 + ε]n−1 with ε→ 0 as pi → 0.

In other words, it allows for subjective beliefs to be absolutely continuous with respect to
true probabilities, and it does not implicitly require the distribution of subjective beliefs to
exhibit “fat tails.” In addition, as we show in the Appendix, Assumption 1 can be weakened
when endowments and beliefs are independently distributed, by letting the distribution of
beliefs exhibit “vanishing tails,” and our results would still go through.

The next result shows that heterogeneity induces the FLB, even in the presence of
transaction costs. In particular, any security i with a sufficiently high value (pi) is under-
priced in equilibrium, while the remaining (low value) securities are overpriced on average.

Theorem 1. [FLB] If Assumption 1 holds, there exists τ̄ > 0 such that for all τ < τ̄ a
necessary consequence of equilibrium is that there exists q̄ < 1 such that, for all i = 1, . . . , n,
if pi > q̄ then security i is underpriced while securities j 6= i are overpriced on average.

Proof. In the Appendix

Why does the FLB arise when agents are heterogeneous? Three key features in our
model help explain it. On the institutional side, the underlying value of an Arrow-Debreu
security is bounded, since it is given by its payout probability. On the agent side, we assume
that agents have finite endowments and are risk neutral. Hence, they focus on relative
comparisons of (subjective) expected returns across securities, choosing to invest their
endowment on the highest return security. Finally, we assume that belief heterogeneity is
idiosyncratic, i.e. represented by some dispersion of subjective expected returns around
the true underlying expected returns. In this context, risk neutrality ensures that demand
for each security does not vanish when true expected returns are equal across securities,
regardless of payout probabilities. As a consequence, the presence of this minimal demand
pushes the price of a security above its payout probability whenever the latter is very small,
causing the security to be overpriced –the underpricing of securities with a high payout
probability directly follows by noting that prices in the market add up to one.
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We provide some intuition by focusing on the case of two securities, unit endowments
(wt = 1 for all t ∈ T = [0, 1]) and zero transaction costs. Note that, in this context, if the
returns across the securities are (ER1, ER2), then the share s1 of investment in security 1

is bounded above and below by

L1[ER1/ER2 | p, θ] ≤ s1 ≤ 1− L2[ER2/ER1 | p, θ].

These bounds are tight because agents with r1t/r2t = ER1/ER2 are indifferent towards
any investment (x1, x2) with 0 ≤ x1 + x2 ≤ 1.

In this market idiosyncratic heterogeneity implies the existence of a positive lower
bound of demand for security 1 when ER1 = ER2, given by q = inf{L1[1 | p, θ] : (p, θ) ∈
int∆×Θ}. But then, when p1 is sufficiently low, this lower bound q on demand prevents
the share of security i and thus its price to fall below p1, leading to overpricing of security
1 (ER1 < 1) and underpricing of security 2 (ER2 > 1 since p2 = 1 − p1 < 1 − s1 = s2).
More formally, let p1 < q and suppose the theorem does not hold, i.e., ER1 ≥ ER2. Then,
by the above bounds we must have s1 ≥ L1[1 | p, θ] ≥ q > p1. But this is a contradiction
since s1 > p1 implies that ER1 < ER2.

5 A similar intuition applies when p1 is sufficiently
high, given the upper bound 1− L2.

It is worthwhile to note the generality of our condition. Idiosyncratic heterogeneity
only requires that there is some dispersion of beliefs around the correct beliefs, i.e. that
there are minimal gains from trade in each security at fair prices.

To illustrate the potential of belief heterogeneity to generate the FLB consider the
following example. Suppose there are two assets in the market with probability of paying
out a dollar being .9% and 99.1%, respectively, and there are 99 risk neutral agents with
accurate beliefs and only one risk neutral agent who believes that the probability of payout
on the longshot is anything better than 1%. If all agents have unit endowments, then
the trading equilibrium involves this single agent investing in the longshot while all the
remaining agents invest in the favorite. In this case, the A-D price is .01 for asset 1 and .99
for asset 2. Thus a very small departure in beliefs of one percent of the population creates
a sizable disparity in returns: the expected return on the longshot in the heterogeneous
agent economy is -10 percent whereas the favorite has a positive expected return.

Theorem 1 states that the FLB arises for extreme probabilities. However, it would be
interesting to know under what conditions a global FLB arises, i.e., that securities with
higher payout probabilities exhibit higher equilibrium returns. As the next result shows,
one way to obtain the global FLB is to impose a symmetry condition on the distribution

5Notice that all that we need is L1[1 | p, θ] > αp1 for some α > 1 and all pi small enough. Hence, we
can replace the uniform bound on L1 with this “vanishing bound,” as long as s1 ≥ L1 holds, which is the
case when endowments and beliefs are independent. See Appendix A.1 for details.
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of beliefs. Specifically, to require that, whenever asset i equilibrium returns are at least as
high as asset j’s, the mass of agents believing that asset i yields the highest returns is at
least as large as those believing the best asset is j.

Assumption 2. P [·|p, θ] is atomless for all (p, θ). Moreover, if ERi ≥ ERj then

Li

[
ERi
ER1

, . . . ,
ERi
ERn

| p, θ
]
≥ Lj

[
ERj
ER1

, . . . ,
ERj
ERn

| p, θ
]

for all i, j = 2, · · · , n, with a similar condition for i, j ∈ {1, n}.

Theorem 2. [Global FLB] If Assumption 2 holds, there exists τ̄ > 0 such that, for all
τ < τ̄ , pi < pj implies ERi < ERj in equilibrium.

Proof. We only proof the case of τ = 0. The proof for τ < τ̄ follows the same argument
used in the proof of Theorem 1 and is therefore omitted.

First, notice that P being atomless implies that if equilibrium expected returns are
given by ERi for all i then market shares satisfy si = Li

[
ERi
ER1

, . . . , ERiERn
| p, θ

]
. Now

consider, by way of contradiction, that pi < pj but ERi ≥ ERj . Then it must be the case
that si < sj since ERi = pi/si ≥ pj/sj = ERj . But this implies that

Li

[
ERi
ER1

, . . . ,
ERi
ERn

| p, θ
]
< Lj

[
ERj
ER1

, . . . ,
ERj
ERn

| p, θ
]
,

a violation of Assumption 2.

This result is a generalization of Ali (1977) to the case of n ≥ 2 horses. He shows that
the global FLB arises in a market with two securities whenever Pr(r1t/r2t ≤ 1 | p, θ) = .5

for any (p, θ), i.e,. the canonical belief is the median belief in the population. To see
why Theorem 2 generalizes this result notice that, when n = 2, by Assumption 2 we must
have that L1[1 | p, θ] = L2[1 | p, θ] = 1 − L1[1 | p, θ], i.e., L1[1 | p, θ] = 1/2. Using a
similar argument it is easy to show that Assumption 2 implies Assumption 1: at fair prices
we must have that Li[(1, · · · , 1) | p, θ] = Lj [(1, · · · , 1) | p, θ] for all i, j. But since P is
atomless then Li[(1, · · · , 1) | p, θ] = 1/n for all i and all (p, θ).

4 Data

Betting markets, and racetrack betting in particular, are textbook illustrations of Arrow-
Debreu securities markets. We focus our attention on the “win odds” market, which is the
market for bets on which horse will win. This is considered the most competitive market
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at the racetrack, given it has the most liquid pool of money. Not surprisingly, it has been
the subject of the most empirical attention.

Prices at the racetrack are quoted in terms of the odds Ri on horse or security i =

1, . . . , n, which are defined as the net return per dollar bet on security i in the event i
wins the race –the gross return is given by Ri + 1. In North American racetracks, the
odds are determined through a “parimutuel” system of wagering in which the losers pay
the winners. This system ensures that there are no differences in liquidity across securities
and is equivalent to the market clearing condition in an Arrow-Debreu securities market
where shares equal prices. Accordingly, market odds satisfy

Ri =
1− τ
si
− 1 i = 1, . . . n. (2)

Given a vector of observed odds (R1, . . . , Rn), we can invert (2) to recover the underlying
A-D prices ρi = si for i = 1, . . . , n.

The FLB is in fact a widely documented empirical pattern of returns across bets at
the racetrack. To illustrate it, consider a large data set consisting of horse starts, i.e, a
sample of horses that competed in some race. Each observation i corresponds to a pair
(wini, Ri + 1), where Ri + 1 is the gross return that A-D security i pays conditional on
horse i winning and wini is an indicator variable for whether horse i won the race or not.
Define Ai as the ex-post gross return on security i, i.e.,

Ai =

Ri + 1 if wini = 1

0 if wini = 0,

and thus the regression

E[Ai | log si] = E[(Ri + 1)wini| log si] = f(log si) (3)

measures the expected gross return among securities that have the same log price (log si).
Using a sample of 176,652 races that were collected from North American tracks over 2003-
2006,6 consisting of 1,456,512 horse starts, we estimate f by non-parametrically regressing
Ai on log si using a locally linear kernel weighted regression.7 Figure 1 shows the estimated
returns –along with their 95% confidence interval, which clearly exhibit the FLB: low value
securities have lower expected returns, where the effect is particularly pronounced when
comparing the extremes. The returns in Figure 1 are net of the track take. Thus, since

6The data were collected through the efforts of members at the website paceadvantage.com. This data
set is one of the largest to have been assembled to study betting behavior.

7We use the Epanechnikov kernel and a rule of thumb bandwidth estimator.
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the average track take is about 0.19, these returns imply that, roughly, horses with prices
below 0.2 are overpriced and those with prices higher than 0.2 are underpriced.

Figure 1: Favorite Longshot Bias
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To understand the argument implicitly put forth by Thaler and Ziemba (1988) as to why
the FLB as found in the data is so puzzling, recall Lemma 1 and consider the indifference
ratios of a representative agent that clears the market in equilibrium. In equilibrium, the
agent must be indifferent across securities to sustain positive asset demand. The expected
gross return to an average bet in the data is ERavg = .76. We can thus use Figure 1 to
recover the representative agent’s indifference ratio ( rrρ ), which is the ratio associated to
the ‘average’ security (representing a random bet) and a security with price ρ. This ratio
represents the amount that the average security must pay in expected returns relative
to a security with price ρ in order for the agent to be indifferent, and we can back out
this relationship from the data because the representative agent is indifferent across all
securities for the market to clear. As Figure 2 shows, the representative agent overvalues
securities with prices .01 or less by over 50 percent, and securities with prices .005 or less
by approximately 100 percent, compared to the average bet.

5 Estimating Heterogeneity

We now show how to estimate a model of an A-D economy where agents have heterogeneous
beliefs. The goal is to estimate the pattern of belief heterogeneity that is consistent with
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Figure 2: Representative Agent Indifference Ratios
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both the betting data and equilibrium in the model. That is, we seek to understand whether
a heterogeneous beliefs model can explain the observed FLB and, furthermore, what the
estimated heterogeneity looks like in contrast with the above representative agent.

In order to illustrate our empirical strategy we first describe the general maximum
likelihood (ML) approach for estimating preferences from aggregate betting data, which
was first introduced by Jullien and Salanié (2000) (which we shall abbreviate as JS) in
the context of a representative agent framework. We then show how to extend their
framework to a population of heterogeneous agents. Let us recall that the dataset consists
of a sample of K markets or races, which are assumed to be independent of each other.
Each market k = 1, · · · ,K is defined by the number of securities nk, a vector of odds Rk =

(Rk1 , · · · , Rknk), and the identity of the winner ikwin. The data thus identify the empirical
relationship between prices and fundamentals, i.e., for any number of securities n with
odds (R1, · · · , Rn) we can identify the underlying probabilities of winning p(R1, . . . Rn):
intuitively, pi(R1, . . . Rn) is identified by the fraction of times horse i wins in the subset of
races characterized by (R1, . . . , Rn). Formally, this can be identified by the non-parametric
regression of the indicator variable that a horse i wins on the vector of odds in the race.

A key insight in JS is to recognize that an equilibrium model of the betting market,
described by parameters θ ∈ Θ, implies a relationship between prices and fundamentals,
denoted p(R1, . . . Rn; θ). The empirical strategy implicitly underlying JS is to find the
parameters θ ∈ Θ whose prediction about the equilibrium relationship between prices and
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fundamentals best matches the actual empirical relationship. This strategy is naturally
implemented using maximum likelihood, and can be described by two key steps:

1. Given a choice of model parameters θ ∈ Θ, for each market k, find the vector of
unobserved payout probabilities pk(θ) = (pk1(θ), · · · , pk

nk
(θ)) that is consistent with

observed odds Rk under equilibrium. That is, we solve

pk(θ) = φ(Rk, θ), k = 1, · · · ,K, (4)

where φ is a model-specific mapping from odds to probabilities.

2. Estimate θ by maximizing the log-likelihood

LL(θ) =
K∑
k=1

log pk
ikwin

(θ). (5)

This ML estimator consistently estimates the value of θ0 ∈ Θ that minimizes the Kullback-
Leibler distance between the model p (R1, . . . , Rn; θ0) and the data p (R1, . . . , Rn) .8

JS showed that, in a representative agent framework of market equilibrium, there exists
a unique equilibrium mapping between prices and fundamentals that is required for Step 1.
In particular, the equilibrium mapping is determined by the set of indifference conditions

U(pk1, R
k
1 ; θ) = U(pk2, R

k
2 ; θ) = · · · = U(pkJ , R

k
J ; θ), (6)

where U(pki , R
k
i ; θ) is the payoff to the agent from investing in a security with payout

probability pki at odds Rki . That is, pk is solved to make the agent indifferent about
investing across securities at the observed odds. JS formally show that, if U is continuous
and respects first order stochastic dominance, the mapping φ from odds to probabilities
implied by (6) is well-defined. Using these conditions, preference parameters θ, such as
risk aversion or cumulative prospect theory (CPT) coefficients, can be estimated. Using
this approach, JS compared different representative agent preferences, and found evidence
in favor of CPT over risk loving as the preferred explanation of the FLB.

A heterogeneous agents model, however, cannot be approached using this represen-
tative agent framework: the set of agents who are indifferent across all securities in a
heterogeneous population typically has measure zero, as is the case when the distribution
of beliefs is continuous. Thus we can no longer use the equilibrium conditions (6) to solve
for the relationship between prices and probabilities pk(θ) = φ(Rk, θ) in a heterogeneous

8Standard errors follow from standard likelihood theory, which JS give explicitly for this context in
Section 4.c of their paper.
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agents model (where the parameter θ ∈ Θ determines the pattern of heterogeneity in the
underlying betting population). Instead, the additional information that we will use to
solve for the equilibrium relationship between prices and fundamentals are the market
shares of the securities sk = (sk1, · · · , skn), which are derived from observed odds using (2).
Note that market shares are not needed in the representative agent approach. However a
heterogeneous agents model predicts market shares in a natural way.

In particular, if Ut denotes the payoff function of agent t and we assume that she
invests her endowment on a single security,9 market shares are given by the aggregation of
individual investments:

ski =
1∫

T wtdt

∫
T
wt1

[
Ut(p

k
i , R

k
i ) > Ut(p

k
j , R

k
j ) ∀j 6= i

]
dt, i = 1, · · · , nk, (7)

where 1 [·] is the indicator function. Thus, our goal is to characterize Ut in terms of our
model of belief heterogeneity and show that the system of equations (7) can be uniquely
inverted to recover pk. In order to be consistent with our theoretical model and to ease
exposition, we focus here on the case of a population of risk neutral agents. Nonetheless,
we describe in the Appendix the general identification strategy when the trader population
exhibits heterogeneity in both risk preferences and beliefs.

To characterize (7) under our model of risk neutrality and heterogeneous beliefs, con-
sider an generic race with n horses. Let us return to Lemma 1, which allows us to rep-
resent an agent t’s preferences in terms of the relative deviations from correct beliefs
rt = (r1t, . . . , rnt) > 0 for any agent t ∈ T. The model implies that agent t invests his/her
endowment in security i = 1, . . . , n if

ERi
ERj

≥ rti
rtj

∀j 6= i.

Assuming a continuous distribution of rt = (r1t, . . . , rnt) > 0 in the population (so that
indifference between two securities has measure zero), risk neutrality gives rise to a discrete
choice model for asset demand consistent with (7). The fact that the discrete choice
behavior is without loss of generality in our belief heterogeneity model is a desirable feature
of our approach and not shared with the existing preference based literature that must
impose discrete choice behavior as an additional assumption.

Because choices are invariant to a monotonic transformation of preferences, we can
9While our theoretical analysis allows agents to abstain from the market when τ > 0, here we assume

that participation in the market is exogenously given and focus only on the decision of which asset to
invest. This is primarily driven by the data: we do not have information on the fraction of consumers who
do not participate in the market. Rather, our data only gives us demand conditional on participation.
This approach is also shared by the literature on estimation of preferences with betting data.
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express agent t′’s utility for betting on asset i in the market as

Ut(pi, Ri) = uti = δi + νit. (8)

where δi = logERi−logER1 and νit = log r1t−log rit. Notice the utility of horse 1 has been
normalized so that u1t = 0. Given this utility specification, it is straightforward to check
that Ut(pi, Ri) > Ut(pj , Rj) is equivalent to ERi

ERj
≥ rti

rtj
. Importantly, νt = (ν1t, . . . , νnt)

fully characterizes an agent’s beliefs. To see why, observe that log pi − log p1 + νit =

log (πti)− log (πt1) for each i = 2 . . . , n, where recall πit is agent t’s subjective belief that
horse i wins. Combined with the constraint that

∑n
i=1 πit = 1, we can uniquely recover the

vector of subjective beliefs πt = (π1t, . . . , πnt) from νt (we have n equations in n unknowns).
Thus, we can represent an agent’s beliefs in terms of the vector of additive errors νt.

Let P (·; θ) be the distribution of νt that captures the belief distribution in the pop-
ulation. P is indexed by an unknown vector of parameters θ ∈ Θ that is the object of
estimation. Assuming that P is continuous and that the distribution of endowments is
independent of P , by Lemma 1 we can express (7) as

si =

∫
νt∈Rn

1 [δi + νit > δj + νjt ∀j 6= i] dP (ν1t, · · · , νnt; θ) i = 1, · · · , n, (9)

It turns out that this system of equations (9) is isomorphic to a horizontally differenti-
ated product market in which each agent chooses among n products, with δi representing
the “mean utility” of product i –the mean utility of product 1 is normalized to be zero– and
νt = (ν1t, . . . , νnt) is a vector of random utility terms that is heterogeneous in the popula-
tion –the random utility term ν1t of product 1 also being normalized to be zero. Inverting
systems of equations defined by (9) is central to the demand estimation framework put
forth by Berry et al. (1995) (aka BLP), i.e., solving for mean utilities given the underlying
distribution of preferences over a set of differentiated products using the observed prices
and market shares over these products. This connection provides us an immediately useful
result: so long as P is continuous, then Berry (1994) shows that there exists a vector of
mean utilities (δ1, . . . , δn) that solves (9). Furthermore, the more recent Berry et al. (2012)
shows that the solution is unique.

We can now exploit these results to carry out the empirical strategy of JS in a hetero-
geneous agents context. Constructing the likelihood for given choice of parameters θ can
be described by the following steps.

(a) For any market k, we numerically find the unique underlying vector of mean utilities
δk = (δk1 , · · · , δknk) ∈ Rn that solves the system of equations (9).
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(b) Given δk = (δk1 , . . . , δ
k
nk

), we can recover the underlying probability distribution over
states of nature pk by using the following facts

(i) δki = logERki − logERk1 ,

(ii) The expected gross return is ERki = (1− τ)
pki
ski
,

(iii) Probabilities (pk1, . . . , p
k
nk

) over the nk possible states of nature sum up to one.

6 Results

The only aspect of the estimation that remains to be discussed is how to parameterize
P (νt; θ). To discipline the parametric model we employ, we impose that belief heterogeneity
is idiosyncratic. That is, we restrict P to satisfy E[νit] = 0 for all i = 1, . . . , n, and

E [νit | ν−i,t] = 0 (10)

for any ν−i,t ∈ Rn−1. We interpret (10) as an important restriction for the random utility
terms νit to represent belief heterogeneity rather than preference heterogeneity. Under
preference heterogeneity, if agent t has a large a preference shock for one horse j (i.e.,
a high νjt) it could mean that she also has a high νit for another horse i with similar
characteristics as j in the race. Thus, even if E(νit) = 0, preference heterogeneity would
not necessarily satisfy (10). Accordingly, condition (10) prevents agents from exhibiting
systematic tastes for horses, which could possibly create an artificial demand for longshots.

We introduce now a rich yet tractable way to model belief heterogeneity that respects
idiosyncratic heterogeneity. In particular, we let the random utility terms νit be distributed
according to a variance mixture of logistic errors. That is,

P (ν2t, . . . , νnt; θ) =

∫ n∏
i=2

F (νit | σ) dG(σ),

where G(σ) is the mixing distribution. This mixture, which appears new to the discrete
choice literature, retains the key properties of idiosyncratic heterogeneity (10).10

We show in the Appendix (section D) that the distribution G can be non-parametrically
identified from the data. Here we discuss how G is estimated. Solving for the inner integral
in (9) analytically (see e.g., Train (2003)) yields the well known mixed logit demand

si =

∫
σ∈R+

exp
(
1
σ δi
)∑n

j=1 exp
(
1
σ δj
) dG(σ) i = 1, . . . n, (11)

10Conditional on σ, F (ν2t, . . . νnt | σ) represents i.i.d. logit errors with common variance σ and thus sat-
isfies idiosyncratic heterogeneity. Then, by integrating out over σ, idiosyncratic heterogeneity is retained.
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where the mixing takes place over the distribution of the variances σ. Although this system
(11) bears a resemblance to the mixed logit demand that was originally estimated by Berry
et al. (1995), there is a critical difference. In contrast to the usual mean mixture –which
violates (10), our heterogeneity is governed by a variance mixture, thereby introducing a
random coefficient 1

σ on the mean utility term δi. This random coefficient does not affect
the existence and uniqueness of a solution to the system, but it does affect our ability to
compute it because the contraction mapping proposed in Berry et al. (1995) is no longer
valid (the mean utilities cannot interact with random coefficients in their setup). Instead,
we minimize the sum of squared errors between observed shares and predicted shares using
a quasi-newton procedure with zero mean utilities as initial values.

A one component mixture, i.e., G(σ) with only one point in its support, corresponds
to the standard logit. Adding components gives rise to a finite mixture. We view this as
a natural way to capture heterogeneity in the population as the different components can
be interpreted as trader “types.” A finite mixture with J components corresponds to a
parameter vector θ = (σ1, · · · , σJ ;P1, · · · , PJ), where σj for j = 1, . . . , J are the support
points of the finite mixture and Pj is the probability mass of component j.11 The parameter
estimates for a one, two and three component mixture are presented in Table 1.

The first thing to note is that the two-component specification provides a much better
fit that the one-component specification. To see this fact, we illustrate in Figure 3 the
pattern of (net) expected returns implied by the one-component and the two-component
specifications, respectively, which are obtained by regressing the predicted ERki on log ski
for all securities i and markets k in the data. While the one component model does a poor
job fitting the expected returns of longshots, the two-component model fits the observed
pattern remarkably well. This improvement is further confirmed by the likelihood ratio
test, which strongly rejects the one-component in favor of the two-component model.

Table 1 also shows that adding a third component does not significantly improve the
log likelihood. In addition, it roughly reproduces the two-component by splitting the
predominant component (P1 = 0.716) into two low variance types (1 and 3) with the
second component still exhibiting substantial dispersion. Consequently, in what follows,
we focus on the two-type model.

In order to check our assumption of risk neutrality, we also estimate a two-component
model in which agents have (homogeneous) CARA preferences following the general ap-
proach laid out in the Appendix. The last column of Table 1 shows the model estimates.
The estimated CARA coefficient (denoted by γ) yields a tiny degree of risk aversion
(γ = 0.003) albeit not significantly different from zero. In addition, the remaining parame-

11Any distribution over a compact support can be approximated by a multinomial distribution. See e.g.,
Theorem 10.15 in Aliprantis and Border (2006).
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Table 1: Parameter Estimates

One Type Two Types Three Types Two Types-CARA
Estimate Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error) (std. error)
σ1 0.067 0.028 0.014 0.034

(0.0035) (0.0033) (0.0058) (0.0074)

σ2 - 0.503 0.690 0.514
(0.0588) (0.1757) (0.0862)

σ3 - - 0.075 -
(0.0306)

P1 1 0.716 0.461 0.706
(0.1237)

P2 - 0.284 0.219 0.294
(0.0184) (0.0390) (0.020)

P3 - - 0.320 -

CARA(γ) - - - 0.003
(0.0031)

Log-likelihood -307,391.5 -307,291.8 -307,291.3 -307,288.0
LR Testa 199.4 - 1.0 7.6
(p-value) (<0.0001) (0.6065) (0.0058)

aThe LR test statistic compares the model against the two-type specification and is given
by 2 lnLLa − 2 lnLL0, where LL0 and LLa represent the log-likelihood of the null and the
alternative model, respectively (where the alternative model nests the null).

ters are virtually identical to the two-component risk neutral version of the model, implying
that the economic implications of these two models are virtually identical. Nonetheless,
allowing for CARA preferences yields a statistically significant likelihood gain.

6.1 Economic Interpretation: Informed and Noise Traders

The two-component mixture suggests a bimodality in the underlying distribution of agents
in the market. In the context of financial markets, there is a large literature that the-
oretically introduces two types of agents: arbitrageurs who are relatively well informed,
and traders exhibiting dispersed beliefs due to poor information or imperfect belief updat-
ing. This two-type classification is commonplace in the market microstructure literature
(see e.g. Glosten and Milgrom (1985), Kyle, 1985), which separates traders into “noise”
traders and insider speculators, in the ‘limits of arbitrage’ literature (De Long et al., 1990;
Stein, 2009), and in research related to mispricing in speculative markets (Shin, 1991, 1992;
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Figure 3: Predicted and Actual Returns
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Serrano-Padial, 2012). Although a pure noise trader in the literature is an agent that in-
vests randomly, we use the term noise trader in the spirit of De Long et al. (1990), i.e., to
refer to traders exhibiting belief dispersion. Ottaviani and Sorensen (2006) interpret these
types in betting markets as late (arbitrageurs) and early traders (recreational gamblers).

If we view the components of the mixture as representing different “types” of agents,
then type σ1 represents informed traders, which is also the modal type in the population
(72%), while type σ2 is a noise trader, since it exhibits a much higher dispersion in sub-
jective valuations. This is, to our knowledge, the first paper empirically suggesting the
existence of informed and noise traders using only aggregate data.12

To quantify the dispersion of type-σ2 agents, consider the choice between investing in
a security at random, yielding average returns in expectation, and an extreme longshot.
For example, in our dataset, the average (gross) return is 0.76, whereas it is about 0.35 for
securities in the bottom percentile of the price distribution. The probability that a type-σ2
agent prefers a security with average returns to a security i yielding 0.35 is given by

Pr(0.76/0.35 > rt/rit) = Pr

(
νt − νit <

(log 0.76− log 0.35)

0.503

)
≈ 0.82,

12There are several empirical studies that estimate the presence of noise traders using individual trading
data from experimental markets (Forsythe et al., 1992; Cipriani and Guarino, 2005; Cowgill et al., 2009),
or transaction data from financial markets (Easley et al., 1997).
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where the last equality follows from the fact that νt − νit is distributed standard logistic.
Furthermore, since type σ2 only represent 28% of the population, and type σ1 prefer

the favorite approximately virtually 100 percent of the time, the probability of the random
investment being preferred to the longshot in the population as a whole is approximately
0.82× 0.28 + 0.72 ≈ 0.95. This is in stark contrast with a representative agent, who must
indifferent between the two bets in order to explain the data.

We further compare the representative agent and traders in our estimated model by
looking at the distribution of indifference ratios r

rρ
in the two-component population. Fig-

ure 4 shows different quantiles of the distribution, which we compare alongside the implied
indifference ratios of a representative agent. Agents in the interquartile range, i.e., the
inner 50% of the agents in the population, exhibit very little dispersion from the canonical
agent, i.e., the agent with indifference ratios equal to 1. That is, the modal behavior in
the heterogeneous population is closely captured by a risk neutral agent with correct be-
liefs.13 This is driven by the fact that the first component has a very low variance. Beliefs
become more dispersed for agents outside the interquartile range, reflecting the fact that
the variance of the second component is much higher (σ2 = 0.503 versus σ1 = 0.028). It is
only at the far tails of our estimated distribution that we approach the extreme beliefs of
the representative agent with respect to longshots.

Figure 4: Individual vs. Market Behavior
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13The interquartile range is a standard measure of dispersion and modal behavior. Manski (2004) also
uses it to document dispersion in beliefs.
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Figure 4 also provides intuition for why the two-type specification performs better than
the one-type. Consistent with the numerical example in Section 3, to generate the observed
disparity in returns between longshots and the average bet, we need only a small fraction
of traders investing in the longshot. This is because the empirical winning probabilities of
longshots are very small. Accordingly, most of the agents belonging to the first component
exhibit beliefs that induce them to invest on the favorites, while agents in the second
component spread their investment across securities, with a minority of them going for
the extreme longshots. In contrast, the one-type specification faces a trade-off: either it
exhibits low belief dispersion (as it is the case) thus fitting well the returns on securities
with moderate and high payout probabilities but does not generate enough demand for the
longshots, or it exhibits higher dispersion, hence fitting poorly the returns on favorites.

7 Preferences vs. Belief Heterogeneity

We now contrast our belief heterogeneity approach with preference based explanations of
the FLB in two different ways. First, we formally compare the empirical fit of our estimated
model to the standard preference explanation in the literature, probability overweighting,
which JS and Snowberg and Wolfers (2010) have shown to explain the data better than
risk loving. Second, we exploit the presence of exogenous variation in the information
structure across races to non-parametrically test the predictions of our belief heterogeneity
hypotheses against the predictions from a general class of preference based theories.

We engage in formal model comparisons by using the representative agent model of CPT
preferences as was employed by JS and assess its performance, relative to our model, in
terms of explaining the variation in the data. The CPT model we estimate is the preferred
specification in JS: a three-parameter model consisting of a single CARA utility function
with risk coefficient γ for both monetary gains and losses, and two separate probability
weighting functions: one for gains and the other for losses –this specification is richer than
the one-parameter rank-dependent utility of Snowberg and Wolfers (2010). As in JS, we
assume that the representative agent has correct beliefs about p. The value of investing w
on security i given odds Ri is given by

U(pi, Ri) = G(pi)u(wRi, γ) +H(1− pi)u(−w, γ),

where u(x, γ) is a CARA utility, G(p) = pα is the weighting function for gains and H(p) =

pβ is the weighting function for losses.14 We estimate the model by maximum likelihood
14Observe that a single initial wealth level does not have to be assumed here because the CPT model

considers only the utility of gains and losses relative to existing wealth.
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Table 2: CPT Estimates

Full Sample JS non-Maiden Maiden
Estimate Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error) (std. error)
CARA (γ) -0.032 -0.072 -0.020 -0.032

(0.0006) (0.021) (0.0029) (0.0041)

Gains (α) 1.22 1.162 1.12 1.20
(0.0307) (0.143) (0.0307) (0.0420)

Losses (β) 0.28 0.318 0.55 0.25
(0.0006) (0.272) (0.0898) (0.0769)

Observations 176,466 4,037 87,394 29,003
Log-likelihood -307,301.5 -7,365.3 -156,101.0 -50,508.8
Vuong Test 34.92
(p-value) (<0.0001)

using indifference conditions (6) –see JS for details.
Our parameter estimates along with the CPT estimates from JS are presented in the

first two columns of Table 2. As can be seen, both estimates are quite close, but because
of the much larger size of our sample our estimates have a much higher precision. We
find that preferences exhibit slight risk loving (γ < 0), a slightly convex weighting of gains
(α > 1) and a highly concave weighting of losses (β � 1). Our estimates reinforce the
major empirical finding from JS: under CPT, the key primitive driving the overpricing of
longshots is the overweighting of loss probabilities (particularly for small probabilities).

7.1 Testing the Models

Observe that the likelihood of our model exceeds that of the CPT model. This suggests
that our beliefs approach exceeds the explanatory power of the existing CPT explanation.
We can formalize this comparison in light of our identification strategy. Let φ (R) denote
the true mapping between prices and fundamentals in the data, i.e., p = φ (R), and
denote φm(R; θ) the mapping between prices and fundamentals predicted by model m ∈
{Belief heterogeneity, CPT} for θ ∈ Θm. If model m is properly specified, then

φ (R) = φm (R; θm) (12)

for some ‘true value’ of parameters θM ∈ ΘM . A natural question is whether (12) is
actually testable, i.e., whether we can test that model m is consistent with the underlying
data generating process. The likelihood framework naturally allows for such a specification
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test, which was first proposed by White (1982). This specification test is derived from the
information matrix equality, which is a fundamental theorem in likelihood theory (see e.g.,
Cameron and Trivedi, 2005). In our context, the information equality states that, if (12)
holds, the following must be satisfied:

E

[
∂2

∂θ∂θ′
log φmiwin (R; θm)

]
= −E

[
∂

∂θ
log φmiwin (R; θm)

∂

∂θ
log φmiwin (R; θm)′

]
, (13)

where the expectation is taken with respect to the true data generating process over winners
and odds (iwin,R) in the data. White’s test uses the sample analogues of each side of the
equality to construct a quadratic form that should be sufficiently close to zero if (12) is
true. We use the form of the test given by White (1987). Specifically, for each race k in
the data let lk(θ̂m) = log

(
φm
ikwin

(
Rk; θ̂m

))
, i.e., the log likelihood value associated with

race k at the estimated parameters θ̂m. The test statistic is constructed as

Tm =

{
K−1/2

K∑
k=1

q̂k

}′{
1

K

K∑
k=1

q̂kq̂
′
k

}−1{
K−1/2

K∑
k=1

q̂k

}
,

where

q̂k = vech
{
∂2lk
∂θ∂θ′

(
θ̂m
)

+
∂lk
∂θ

∂lk
∂θ′

(
θ̂m
)}

.15

If (12) holds, Tm is asymptotically distributed χ2 with J(J + 1)/2 degrees of freedom,
where J is the length of the parameter vector θm ∈ Θm. Hence large values of Tm indicate
a significant difference between the model’s predictions and the data.

The results of the test are rather stark: it fails to reject (12) for the belief heterogeneity
model at standard significance levels (T = 8.54 whereas the 10% critical value is 10.64).
Hence, we cannot reject the null hypothesis that the BH model equals the true data
generating process. In contrast, TCPT = 1, 139.08, which clearly rejects the null that the
CPT model describes the true data generating process. Hence, although the log-likelihood
values of the two models are somewhat close, as far as the information equality test there
is a big difference in terms of their ability to accurately describe the true data generating
process. We don’t interpret this test as literally telling us that our model is entirely properly
specified. However, we do interpret it as saying that it captures the subtle variation in
the data well enough such that it cannot be distinguished from the true data generating
process with nearly 200, 000 races and only 3 parameters! We reach similar conclusions
if instead we implement the non-nested model selection tests proposed by Vuong (1989)
between the BH and CPT models (see bottom of Table 2).

15vech(A) denotes the half-vectorization of symmetric matrix A.
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7.2 Information Differences and the FLB

We have shown that our estimated two-type model of belief heterogeneity better explains
the FLB as compared to a representative agent CPT model. However, these model compar-
ison tests have a few drawbacks. First, we have only offered one parametric alternative (the
CPT model estimated by JS), which is far from exhausting the space of possible preference
alternatives, including possibly heterogeneous preference models such as the one studied
by Chiappori et al. (2012). Moreover, although we derived our random utility (11) on the
basis of belief heterogeneity, and our estimates have a natural interpretation in terms of
informed and noise traders, such heterogeneity could also have a preference interpretation.

In light of this, how can we distinguish between our belief based explanation and
preference based models? The key difference is the following: in a standard preference
based approach, an individual has preferences for binary gambles (p,R) and thus each
individual’s preferred asset in a race depends deterministically on the menu of gambles
{(pi, Ri)} in the race. In our belief based model this is no longer true: the true underlying
menu of gambles is insufficient to characterize an individual’s asset demand because an
individual will have idiosyncratic deviations in beliefs. These belief shocks will vary for
the same individual across both horses and races. Thus, for the same menu of gambles
{(pi, Ri)} in two different races, an agent will have different preference ranking over horses
i = 1, . . . , n in the two races depending on the belief shocks she receives, whereas in
preference based models the individual will have exactly the same preferences ranking over
horses as long as the underlying menu of gambles is invariant across races.

This distinction has a very important testable implication: beliefs change with infor-
mation whereas preferences for gambles do not. Thus the equilibrium prices predicted by
our beliefs based model will be different for two races with the same fundamentals but
different public information whereas the predictions from a preference based model will be
the same. This immediately suggests a non-parametric approach to testing between our
beliefs model and preference alternatives - an ideal experiment would be to use exogenous
variation in the amount of information about participating horses and empirically study
whether this impacts pricing in the market. Unfortunately, our data does not contain
any horse specific information. However, we exploit the fact that horse races on the same
day at the same track come in two different forms: maiden and non-maiden. Horses in a
maiden race are those that have yet to win a single race, and thus by definition any new
horses are entered into maiden races whereas horses must have a racing history to partici-
pate in a non-maiden race. Thus, on average, there is much less handicapping information
about horses in maiden races as compared to non-maiden (Camerer, 1998; Mitchell, 1989).
Accordingly, for a given vector of winning probabilities p and the same trader population,
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Figure 5: The FLB in Maiden and non-Maiden Races
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the lower uncertainty surrounding non-maiden races should lead to less belief dispersion
and, in turn, to a less pronounced FLB, since traders can condition their beliefs on richer
information –a fact we discuss in more detail below. In contrast, a purely preference based
model would yield identical predictions across race types.

To compare these predictions, we control for other differences that might exist between
maiden and non-maiden races by restricting our samples to claiming races, in which horses
can be purchased before the races and exhibit horses with similar price tags (thus trying to
ensure a level playing field). This is the most frequent type of races in the US (over 54% of
all races). Furthermore, maiden and non-maiden claiming races take place typically on the
same day at the same track,16 and have similar track takes.17 Thus, arguably the trader
population should be similar across maiden and non-maiden claiming races.

Figure 5 shows the relationship between prices and returns for each race type. As can
be seen, there are considerable price differences. Specifically, the magnitude of the FLB is
much more pronounced in maiden compared to non-maiden races: while expected returns
in maiden races go from $0.05 for extreme longshots to $0.96 for heavy favorites, returns in
maiden races are much more compressed, ranging from $0.45 to $0.89, with the reduction
in mispricing being especially prominent for longshots.

16In our dataset, 99.5% of maiden races were run in a day where non-maiden races were also run.
17The average track take for maiden claiming races is 0.190 with std.dev. 0.04. For non-maiden claiming

races the average take is 0.192 and the std.dev. is 0.04.
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Figure 6: CPT Weighting Function for Losses

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

p

H

non-Maiden

Maiden

JS Estimate

This result hints at a basic inconsistency of a preference based view of the FLB: it can
only explain pricing differences across types of races through variation in preferences. We
illustrate the magnitude of this inconsistency by estimating the above CPT model on the
separate subsamples. The estimates are given in the last two columns of Table 2, which
show significant differences across samples, in particular on the probability weighting of
losses (significant at the 1% level): while both the full sample and maiden parameters are
very similar, β is more than twice as high in non-maiden races, resulting in a much less
concave weighting function (see Figure 6). These large swings in preferences across maiden
and non-maiden races are difficult to rationalize and, given the stark differences in prices
across races, such swings will also be present in any alternative preference based model.18

7.2.1 Self-Selection into Races

We now show that this preference instability observed across race types is not easily ex-
plained by the self selection of agents into races based on heterogeneous risk preferences.
The hypothesis is that, in addition to making an optimal choice of which horse to bet
within a race, agents with different risk preferences are also selecting across races in a way
that accounts for the pricing differences between maiden and non-maiden races.

This self-selection hypothesis has a clear testable implication. If agents are self-selecting
18Following Chiappori et al. (2009), we also estimated a model with heterogeneous risk attitudes and

found that while most agents are risk lovers in maiden races, they become risk averse in non-maiden races.
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based upon well-behaved risk preferences, then we should not observe any significant arbi-
trage opportunities across race types that would allow a bettor to receive higher odds at
higher win probabilities. This is because all standard risk preferences, including expected
utility and CPT, satisfy first order stochastic dominance, meaning that agents prefer bets
that exhibit both lower prices (higher odds) and lower risk (higher winning probability).
Thus, if such opportunities exist, bettors should exploit them by switching bets across race
types until prices adjust to the point where this dominance is eliminated. We will call the
existence of such an arbitrage a “profitable switch.”

The picture in Figure 5 already suggests a large presence of profitable switches in the
data: longshots in non-maiden races pay higher average returns than similar longshots in
non-maiden races. This pricing asymmetry can be exploited to construct a betting strategy
that switches bets from maiden to non-maiden races and earns both higher odds at higher
win probabilities. In order to construct such a strategy, we use our two-type specification
to estimate the underlying winning probabilities pk for each race k in the data –recall we
fail to reject it is the true data generating process, so true probabilities should be very
close to the ones predicted by the model. We then check for every horse in a maiden race
whether there is a horse in a “nearby” non-maiden race that dominates or is dominated by
the maiden horse (where “nearby” means a race that takes on the same day at the same
track, and “dominance” means an asset pays higher odds with a higher winning probability
than another). Thus, whenever a maiden horse is dominated by a non-maiden one in a
nearby race, our model suggest a profitable switch from maiden to non-maiden that takes
advantage of the fact that similar longshots are more favorably priced in non-maiden races.

We find that 91.6% of maiden races have at least one violation of dominance, and 81.5%
include a profitable switch to a non-maiden race according to our model, that is, a horse
i with price ρk′j < ρki and probability pj ≥ pi for some horse j in a non-maiden race k′

run in the same day at the same track. If we restrict attention to adjacent maiden and
non-maiden races, i.e., maiden races immediately preceded or followed by a non-maiden
race in the same track, the percentage of violations is still quite high: 63.5%, with 49.5% of
them including a profitable switch to a non-maiden race. By comparison, the frequencies of
dominance violations across maiden races are only 31.1% for same day races and 22.3% for
adjacent races. Consequently, our model detects pervasive violations of dominance across
race types, compared to violations within type, that would appear strongly at odds with
selection on preferences being the cause of the pricing differences between races.

The dominance violations flagged by our model translate into a significant arbitrage
opportunity. The second row of Table 3 shows that using the flags to switch from maiden to
non-maiden in the same day at the same track leads to a 7.3% increase in the probability of
winning and a 5% increase for adjacent switches. Because every switch involves a cheaper
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Table 3: Alternative Betting Strategy

Same Day Adjacent
Estimatea Relative Estimate Relative

Variable (Robust s.e.) Change (Robust s.e.) Change
∆Ex post Returns 0.0935∗∗ 29.19% 0.0715∗ 23.85%

(0.0231) (0.0429)

∆Winnerb 0.0042∗∗ 7.33% 0.0030∗ 4.98%
(0.0012) (0.0023)

∆Log Price -0.0468∗∗ -0.0612∗∗

(<0.0001) (<0.0001)
Observations 65252 20375

aStd. errors are clustered by race. ∗∗ means p-value< 0.01, ∗ means p-value< 0.1.
bOne sided test. Null Hypothesis: ∆Winner < 0.

bet in a non-maiden race, traders would pay lower prices at no cost to the overall probability
of winning. This generates a large effect on the average returns to betting: as the first row
in Table 3 illustrates, ex post returns increase by 29.2% (23.8% for adjacent races).

These estimates show that selection into races based upon risk preferences alone cannot
explain the preference instability across maiden and non-maiden races since any such selec-
tion should exploit the substantial arbitrage opportunities present across race types, and
thus reduce the observed pricing differences rather than create them. The only selection
effect involving preference that could explain the price variation is one based upon both
risk attitudes and non-pecuniary preferences. In particular, the price differences between
maiden and non-maiden races requires individuals betting in maiden races to be less risk
averse. This margin of selection may seem natural. However, to avoid the "no arbitrage"
argument above, there must also be an unexplained preference shock for betting in maiden
races. One difficulty with this explanation is that, if there were non-pecuniary prefer-
ence shocks, e.g., a thrill to betting on one’s favorite horse, these are likely to be more
pronounced for horses with a longer racing history rather than new horses.

7.2.2 Can Belief Heterogeneity Explain the Difference?

We now show that heterogeneous beliefs provides a natural explanation for the pricing
disparity between maiden and non-maiden races. Since there is less public information in
maiden races we should expect more belief dispersion in maiden races, particularly among
noise traders, leading to a more pronounced FLB. Nonetheless, our beliefs model does still
impose a restriction we can test: the change in the FLB across race types should be driven
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by a change in the belief dispersion of each type and not by a change in the proportion
of trader types. If our model instead were to empirically require a higher prevalence of
noise traders in the population to explain the change in the pattern of returns, it would
exhibit the same parameter instability that the preference based theories suffer from. We
formulate this claim as two testable hypotheses.

Hypothesis 1. The fraction of types is the same across maiden and non-maiden races.

Hypothesis 2. Belief dispersion of each type is higher in maiden races compared to non-
maiden races.

The basic insight behind Hypothesis 2 is that, if agents are Bayesian, their beliefs
should get closer as the amount of (public) information about the underlying state of the
world accumulates over time. For instance, in the context of horse racing, if agents observe
the performance of horses over time, they would eventually agree on the (true) winning
probabilities.19 Accordingly, if beliefs get closer as more information becomes available,
we should also expect a smaller FLB in non-maiden races. We show in the Appendix that
this is the case in a model where the same A-D security market is repeated over time.
Specifically, we show that, for given p, the FLB gets mitigated when agents can observe
the history of ex-post returns and agree on the direction of the belief updating.

Table 4 presents the model estimates for the two samples, which confirm Hypothesis 1
and 2. The fraction of type one is very stable around 70-73% –we fail to reject Hypothesis 1
at any standard significance level. In contrast, belief dispersion estimates are significantly
smaller (at the 1% level) in non-maiden races: σ1 is virtually zero and σ2 is about half its
value in maiden races. Thus, remarkably, our heterogeneous beliefs approach explains the
change in prices across information structures in the theoretically predicted way.

Overall, these results give credence to the idea that belief heterogeneity is a major
driver behind the FLB because, unlike preference theories, it is able to naturally explain
large changes in pricing patterns across races with different information environments.
It is important to stress that the disparity between maiden and non-maiden prices does
not rule out alternative representative agent models, such as those in which preferences
exhibit some form of ambiguity aversion, since one can regard bets on a maiden horse as
more ambiguous than bets on a non-maiden horse. For instance, agent preferences could
follow CPT for uncertainty in which the weighting function is replaced by a non-additive
capacity (see Tversky and Kahneman, 1992). Nonetheless, any such model would still need

19Belief convergence is formally treated in the literature on merging of opinions (Blackwell and Dubins,
1962; Kalai and Lehrer, 1994; Lehrer and Smorodinsky, 1996; Gossner and Tomala, 2008), and models of
learning in competitive markets (Townsend, 1978; Feldman, 1987; Easley and Blume, 1982; Vives, 1993).
Although the mentioned research on merging concerns the evolution of beliefs in the long run, Sandroni
and Smorodinsky (1999) show that the speed of convergence can be quite fast.
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Table 4: BH Estimates for Claim and non-Claim Races

non-Maiden Maiden Full Sample
Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error)
σ1 0.0001 0.0366 0.028

(<0.0001) (0.0079) (0.0033)

σ2 0.340 0.6599 0.503
(0.0180) (0.1403) (0.0588)

P1 0.700 0.727 0.716

P2 0.300 0.273 0.284
(0.0104) (0.0321) (0.0184)

Observations 87,394 29,003 176,466
Log-likelihood -156,090.0 -50,505.8 -307,291.8

to explain the differences across race categories by means of a change in beliefs, regardless of
whether those beliefs are represented by additive probabilities or not. In addition, it would
exhibit the same weaknesses as a model in which the representative agent has expected
utility preferences but her beliefs are chosen ad hoc to rationalize the data.

8 Conclusion

We have shown in this paper that allowing for belief heterogeneity in asset markets can
reconcile model predictions with observed aggregate patterns without compromising the
validity of standard behavioral assumptions such as weak risk aversion and expected utility.
We have used Arrow-Debreu security markets as a general setting in which to illustrate
these points. We have also showed that a belief based model of trade in financial markets
outperforms existing preference based explanations of the FLB on several dimensions. We
think heterogeneous beliefs have the potential to play an important role in empirical work
in other institutional settings, such as insurance and credit markets, and we hope this
paper encourages future research in this area.
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Appendix

A Omitted Proofs

Proof of Lemma 1. Consider the maximization problem of agent t with endowment wt > 0

and beliefs (π1t, . . . , πnt)� 0. Given the state of the world (p1, . . . , pn) and market prices
(ρ1, . . . , ρn)� 0, the agent solves

max
(x1,...,xn)∈Rn+

n∑
i=1

xi

(
πit
ρi
− 1

)
+ wt

s.t.

n∑
i=1

xi ≤ wt.

The ratio πit/ρi represents the subjective (expected) returns of security i, i.e. the return
given agent’s beliefs. If there is a security i such that

πit/ρi
πjt/ρj

> 1, ∀j 6= i, (14)

then the solution to the agent’s problem implies investing all the endowment wt in security
i. This is because (i) security i yields the strictly highest subjective returns among all
securities; and (ii) security i’s subjective returns are strictly greater than one. Property
(ii) comes from the fact that, since

∑
i πi = 1 and

∑
i si = 1, we must have max

h

πht
sh

> 1

whenever πht
sh
6= πkt

sk
for some h, k. This also means that, if the latter is true, the agent will

invest all her endowment in the securities yielding max
h

πht/sh, being indifferent about how

much to invest on each of them. Finally, if πht
sh

= πkt
sk

for all h, k, then subjective returns
are all equal to one, making the agent indifferent between investing any amount in [0, wt].

To finish this case, notice that, by letting rit = pi/πit, expression (14) becomes

ERi
ERj

>
rit
rjt
, ∀j 6= i.

Proof of Theorem 1. We consider first the case of a market with zero transaction costs
τ = 0. Let qi(ER1, . . . , ERn;p, θ) represent the aggregate investment on asset i and denote
rit =

(
rit
r1t
, . . . , rit

ri−1t
, rit
ri+1t

, . . . , ritrnt

)
. Given Lemma 1, qi at fair prices satisfies, for all (p, θ),

∫
T
wt1[rit < (1, . . . , 1)]dt ≤ qi(1, . . . , 1;p, θ) ≤

∫
T
wt1[rit ≤ (1, . . . , 1)]dt.
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By Assumption 1, the lower bound on qi in this expression is bounded away from zero while
the upper bound is bounded below

∫
T wtdt. In addition, aggregate investment is bounded

by the aggregate endowment in the market:

∑
j

qj(ER1, . . . , ERn;p, θ) ≤
∫
T
wtdt.

This implies that, the market share of security i at fair prices, which is given by

si(1, . . . , 1;p, θ) =
qi(1, . . . , 1;p, θ)∑
j qj(1, . . . , 1;p, θ)

,

must be bounded above zero and below one. Define

s := min
i

inf{si(1, . . . , 1;p, θ) : (p, θ) ∈ (0, 1)×Θ} > 0.

To prove part (i) of the theorem, let pi > q̄ := 1 − s and suppose the theorem does not
hold, i.e., pi ≤ ρi = si. Then, since

∑
j 6=i sj = 1 − si and

∑
j 6=i pj = 1 − pi there must be

at least a security h with ERh ≥ 1. Pick the one with the highest expected returns. For
this security we must have ERh

ERj
≥ 1 for all j, and thus it must be that sh ≥ s. But then,

since si ≥ pi > 1 − s by assumption, we have that sh ≤
∑

j 6=i sj < s, a contradiction.
Obviously if security i is strictly underpriced, we must have that the remaining securities
are overpriced on average:

∑
j 6=i ρj >

∑
j 6=i pj .

Now consider the introduction of transaction costs. If, before introducing them, trader
t was indifferent between investing on any security i or not investing,20 we must have

ERi
ERj

=
rit
rjt

∀j 6= i. (15)

In this context, let ERi = p
s∗i
, where s∗i is the market share associated with zero transaction

costs. After introducing positive transaction costs, for the agent to be indifferent between
investing in security i and not investing in the market, expected returns need to satisfy

ERi = (1− τ)
pi
s′i

=
p

s∗i
,

where s′i is the new share for i, implying that s′i < s∗i . But this means that (i) the agent
does not longer invest in the market at the old prices (ρi = s∗i for all i), and (ii) if she is
indifferent between investing in i or not at the new prices, she has strict incentives not to

20Recall from the proof of Lemma 1 that for an agent to be indifferent between investing or not she must
also be indifferent between investing among any two securities.
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invest in some of the other securities. This is because s′i < s∗i implies s′j > s∗j for some
security j, given that market shares add up to one. Hence, the above indifference condition
translates into

ERi
ERj

≥ rit
rjt

∀j 6= i, (16)

with strict inequality for some j.
Summing up, introducing transaction costs can potentially reduce the demand for any

given asset. If this reduction is big enough the equilibrium market share for some security
may not be bounded above zero, also implying that the other securities’ shares may not
be bounded below one, so that the FLB may not hold. Thus, in order to show that the
FLB holds in equilibrium we need to show that this does not happen for low enough τ.

The first thing to note is that, since Li[z|p, θ] = Pr[rit � z|p, θ] and Li[1|p, θ] is
bounded away from zero, we can always find z = (z1, . . . , zn)� (1, . . . , 1) close enough to
(1, . . . , 1) such that Li[z|p, θ] is also bounded above from zero for all i.

Second, notice that the smaller the track take τ , the closer the market share s′i gets to
s∗i with s′i → s∗i as τ → 0 for all i, and thus the closer the indifference condition (16) gets
to condition (15). Hence, if we fix ERi/ERj = 1 for all i, j, given z � (1, . . . , 1) we can
always find a low enough τ > 0 such that, for all τ < τ , the marginal traders indifferent
between investing in i or not have indifference ratios satisfying z < rit < 1.

Therefore, combining these two facts we can show that market shares when ERi/ERj =

1 for all i, j are bounded away from zero for all τ < τ given some small τ > 0 and apply the
same reasoning as in the case of τ = 0 to show that the FLB must hold in equilibrium.

A.1 Weakening Assumption 1

As we mention in Section 3, when endowments and beliefs are independent, the FLB could
obtain even when the mass of agents strictly preferring security i over the alternatives
dwindles to zero as pi → 0. The next assumption and theorem formalize this intuition.

Assumption 3. There exist p > 0 and α > 1 such that Li[(1, · · · , 1) | p, θ] > αpi for all
pi < p and all i = 1, . . . , n.

Theorem 3. If Assumption 3 holds and endowments are independent of P , there exists
τ̄ > 0 such that for all τ < τ̄ a necessary consequence of equilibrium is that there exists
q̄ < 1 such that, for all i = 1, . . . , n, if pi > q̄ then security i is underpriced while securities
j 6= i are overpriced on average.

Proof. The same argument as the one used in the proof of Theorem 1 follows through by
noticing that the orthogonality of endowments and beliefs implies that si is bounded below
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by Li. To see why, focus on the case of τ = 0 and notice that

si ≥
1∫

T wtdt

∫
T
wt1{rit/rjt < ERi/ERj ∀j 6= i}dt

=
1∫

T wtdt

(∫
T
wtdt

)
Li [(· · · , ERi/ERj , · · · ) | p, θ] ,

where the last inequality follows from the independence of endowments and indifference
ratios. But then, the above assumption guarantees that si ≥ Li[(1, . . . , 1) | p, θ] > pi at
fair prices for all p with pi < p. Given this, the same argument by contradiction used in
the proof of Theorem 1 immediately applies.

B Public Information and the FLB

In this section we illustrate how the FLB is mitigated by the arrival of information, which
is consistent with the above findings regarding maiden and non-maiden races.

Consider the following scenario. There is going to be a sequence of two A-D security
markets involving the same securities –the same result readily generalizes to having more
than two markets. True payout probabilities p are independent and the same across
markets. We assume that the first time the market is run, agents have heterogeneous
posterior beliefs. We also assume that the distribution of those beliefs is continuous with
full support in int∆n−1 and that τ = 0 and that, in the absence of public information,
agents’ inferences and equilibrium prices in both markets would be the same. Markets are
identical, except in the amount of public information available: before trading in the second
market, all agents observe the realized outcome in the first market, i.e., which security paid
positive returns. Let Hi denote the event that security i pays out in the first market. Given
agent t’s beliefs, let Ltij(Hi) denote the likelihood ratio associated to outcome Hi. That is,
Ltij(Hi) = Prt(Hi|i)

Prt(Hi|j) , where Pr
t(Hi|j) is agent t’s probability assessment of observing Hi

conditional on security j paying out in the second market. According to Bayes’ rule, the
ratio of agent t’s subjective probabilities conditional on observing Hi satisfies

π′it
π′jt

= Ltij(Hi)
πit
πjt

, i, j = 1, · · · , n, (17)

where π and π′ represent beliefs before and after observing Hi, respectively. Our next
result shows that, whenever agents agree on the ‘direction’ of the updating, the release
of public information about past outcomes decreases the underpricing of favorites and the
average overpricing of longshots, that is, the FLB is mitigated. First, we provide the formal
notions of agreement and unbiased interpretation of information we use in the result.
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Definition 1. Agents ordinally agree on the interpretation of Hi if Ltij(Hi) < (>) 1 for
some t implies Lkij(Hi) < (>) 1 for all k and all i, j. Agents ordinally agree if they agree
on the interpretation of Hi for all i = 1, · · · , n.

Notice that ordinal agreement is weaker than requiring beliefs to be concordant (Mil-
grom and Stokey, 1982; Ottaviani and Sorensen, 2012), which would imply ‘cardinal’ agree-
ment, i.e. Ltij = Lkij for all i, j, t and k.

Definition 2. Agent t is unbiased if Ltij(Hi) > 1 for all j 6= i and all i = 1, · · · , n.

The notion of unbiased beliefs implies that after observing i pay out a trader revises
upwards her beliefs about i paying out in the second market relative to all other securities.
This leads to both less underpricing of heavy favorites and less overpricing on average of
longshots. That is, public information mitigates the FLB, as it is the case in Figure 5.

Proposition 1. If agents are unbiased and ordinally agree then there exists p̄ such that
for all pi > p̄ the expected price of security i in the second market is higher than in the first
market, and the prices of securities j 6= i are lower on average.

This result implies that when Theorem 1 holds, new information mitigates the FLB:
heavy favorites are less underpriced and longshots exhibit less overpricing on average.

Proof. Fix the state of the world p = (p1, p2, · · · , pn). For simplicity, we assume that,
when indifferent between investing or not in the market, all agents decide to invest –the
proof logic would be the same as long as the arrival of public information does not alter
agents’ decision to participate when indifferent. Given (17), market shares (i.e. prices) in
the second market after observing Hi are given by

si =
1∫

T wtdt

∫
T
wt1

[(
π′it
π′1t

, · · · , π
′
it

π′nt

)
<

(
si
s1
, . . . ,

si
sn

)]
dt

=
1∫

T wtdt

∫
T
wt1

[(
πit
π1t

, · · · , πit
πnt

)
<

(
Lt1i(Hi)

si
s1
, . . . ,Ltni(Hi)

si
sn

)]
dt.

It is straightforward to check that, when the distribution of prior beliefs is continuous and
has full support, the release of public information leads to a higher si when Ltij(Hi) > 1

for all j and all t: at any given price, the mass of agents that would consider security i the
optimal investment has gone up after observing the information.

Next, notice that we must have Pr(Hi)→ 1 as pi → 1. Thus, if agents ordinally agree
and are unbiased then Pr(Ltij(Hi) > 1 ∀j 6= i)→ 1 as pi → 1, implying that the probability
that ρi (= si) is higher in the second market is close to one for pi close to one. That is,
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for pi sufficiently high the expected price of security i is higher in the second market than
in the first market. This, in turn, implies that

∑
j 6=i ρj goes down in expectation.

C General Approach to Estimating Heterogeneity

We describe here how to conduct step 1 in the estimation of a heterogeneous population
model laid out in Section 5, which involves solving the system of equations (7):

ski =
1∫

T wtdt

∫
T
wt1

[
Ut(p

k
i , R

k
i ) > Ut(p

k
j , R

k
j ) ∀j 6= i

]
dt, i = 1, · · · , nk.

Accordingly, the goal is to characterize Ut so that we can estimate the heterogeneous
population model by inverting the system of equations (7) to recover pk. To do so, we
assume agents have expected utility preferences and exhibit heterogeneity in beliefs and in
risk attitudes. Accordingly, agent t’s payoff from investing in security i is given by

Ut(pi, Ri) = πitu(wtRi, γt) + (1− πit)u(−wt, γt), (18)

where πit is agent t’s belief about security i and u is utility over wealth with risk attitudes
governed by the one-dimensional parameter γt –e.g., the coefficient of absolute risk aversion
in CARA utility. The cardinality of expected utility allows to normalize the utility from
losing wt to be zero, i.e., u(−wt, γt) = 0. In addition, since agent preferences over securities
in a given market are invariant to a monotonic transformation of utility, we can take the
log of the RHS of (18) and subtract log p1 to write Ut as

Ut(pi, Ri) = log u(wtRi, γt) + ξi + νit,

where ξi = log pi− log p1 and νit = − log rit. If we assume that risk parameters and beliefs
are independently distributed and that agents have equal endowments (normalized to 1),21

we can write (7) as

ski =

∫
γt∈R

∫
νt∈Rn

1
[
log u(Rki , γt) + ξi + νit > log u(Rkj , γt) + ξj + νjt ∀j 6= i

]
dP (νt; θ)dH(γt),

for all i = 1, · · · , nk, where P (·; θ) is the (continuous) distribution of νt = (ν1t, · · · , νnkt)
and H represents the distribution of risk parameter γt. Thus, as long as this system of
market shares has a unique solution in terms of the vector (ξ1, · · · , ξnk), we can recover

21Alternatively, we could assume wt = a > 0 for all t ∈ T.Generally, without information on endowments,
the risk parameter is not separately identified from a.
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the underlying probabilities pk from observed odds Rk.

One way to ensure the existence of a unique solution is to assume, as we do in our esti-
mation, that νt is a variance mixture of independent logit errors with mixing distribution
G(σ). Accordingly, market shares are given by

ski =

∫
γt∈R

∫
σ∈R+

exp
(
1
σ log u(Rki , γt) + 1

σ ξi
)∑nk

j=1 exp
(

1
σ log u(Rkj , γt) + 1

σ ξj

) dG(σ)dH(γ), i = 1, . . . nk. (19)

This system has a solution, given that it satisfies the sufficient conditions in Berry (1994),
and it is unique as shown by Berry et al. (2012).

D Non-parametric Identification of Belief Heterogeneity

In this section we formally prove identification of the distribution of beliefs, which is the key
primitive we estimate in our model. The key source for identification stems from variation
in the fundamentals p = (p1, . . . , pn) ∈ int∆n−1 across different markets. In order to
focus our attention on the logic of identification, we consider here a simplified setting with
two horses and track take τ = 0. Our discussion however easily generalizes to the n-horse
context. Indeed, the additional variation made possible by n-horses rather than two horses
only aids identification rather than complicating it. Observe that an n-horse can always
replicate a two horse race by letting n−1 horses have arbitrarily similar state probabilities
but not vice versa, and thus the two horse problem is the essential setting to study.

In each race (i.e. market) we have two horses labeled i = 1, 2 and can observe the
market share s of horse 1 (the share of horse 2 being simply s2 = 1 − s) and expected
returns (ER1, ER2) as a function of the market share. The belief heterogeneity model
relates these market observables via the random utility

ui = logER1 − logER2 − εi

where εi corresponds to the belief disturbance associated with agent i. Agent i in the
market bets on horse 1 if ui > 0. Assuming a continuum of agents in the market and εi
distributed independently of (ER1, ER2) with distribution function H, we thus have that

s = H

(
log

p

s
− log

1− p
1− s

)
, (20)

since ERi = pi
si
. We assume H satisfies the usual regularity conditions for a CDF, namely,

it is continuous and strictly monotone over the support. Note that, for any s ∈ (0, 1) there
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exists a unique p that solves the above equation. In particular letting p→ 1 we have that
log p

s → 0 and log 1−p
1−s → −∞, and thus the RHS of (20) approaches 1. Likewise as p→ 0

we have that RHS of (20) approaches 0. Because the RHS of (20) is continuous in p, then
by the intermediate value theorem for any sc ∈ (0, 1) there exists a pc ∈ (0, 1) that solves
(20) and hence sustains sc in equilibrium. Thus the support of s under the model is the
full unit interval (0, 1) and identification of H becomes straightforward: if we invert both
sides of (20) we have

H−1 (s) = log
p

s
− log

1− p
1− s

. (21)

Because all the terms on the RHS are derived from the data, we thus identify the inverse
of H for all s ∈ (0, 1) and hence H itself.

In the model we estimate in the paper, we restrict H further to be a variance mixture
of logistic distributions. That is, for any t ∈ R we model

H (t) =

∫
σ>0

F (t | σ) dG (σ) .

where F (· | σ) is a standard logistic distribution with scale parameter σ. The object we
estimate is G, i.e., the distribution of “types” in the population where each type corresponds
to a different variance in beliefs, and G is assumed to have finite support. It is important
to emphasize that the support points themselves are not known ex-ante. Hence if we let G
denote the set of all distribution functions with finite support, this is an infinite dimensional
space of distributions. Using standard results from the identifiability of logistic mixture
models (see Theorem 1 in Shi et al. (2012)), we can recover G from H.
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