
On the Possibility of Trade with Pure
Common Values under Risk Neutrality

Ricardo Serrano-Padial∗

University of Wisconsin-Madison
First Draft: September 2005

This Version: June 2007

Abstract

This paper investigates the existence of bargaining mechanisms that in-
duce trade with positive probability when agents are risk neutral, which con-
stitutes a polar case not covered by existing no trade results. It is shown
that a quasi no-trade theorem holds in the bilateral case: if the distributions
of traders’ private signals are continuous, no equilibrium with positive prob-
ability of trade exists in any trade environment with pure common values.
With discrete distributions trade only occurs when the seller and the buyer
receive their lowest and highest signals, respectively. A counterexample in
which trade happens with probability one is provided to show that the result
fails to hold when there are more than two traders. A property of multilateral
mechanisms eliciting trade is that buyers’ payments cannot equal expected
conditional values almost everywhere. This implies that trade is incompatible
with information aggregation in common value environments.

JEL Classification: C72, C78, D82.
Keywords: no trade, common values, private information, bargaining
mechanisms.

1 Introduction

Existing no-trade theorems assert that, under strict risk aversion, trade cannot
happen with positive probability in pure common value environments when there is
uncertainty about the value of the goods traded (Tirole (1982), Milgrom and Stokey
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(1982), Morris (1994)). However, it is an open question whether risk neutral agents
may agree to trade. Under risk neutrality, these no-trade theorems only state that,
if the initial allocation is Pareto optimal (i.e. any allocation in a common value
setting) and agents receive private information about the value of the goods traded,
there is no trade that strictly improves such initial allocation. Hence, they do not
rule out the existence of weakly individually rational (IR) and incentive compatible
(IC) bargaining mechanisms leading to trade with positive probability. In any such
mechanism, agents would be indifferent between the initial and the final allocation,
but they could nonetheless decide to trade.

I address this often overlooked indeterminacy by investigating whether trade can
happen when (i) risk-neutral traders have common priors about the unknown value
of the object to be traded and (ii) some of them receive private signals about such
value.1 I show that, if there is one buyer and one seller, there is no bargaining
mechanism in which trade can happen with positive probability when the signal
distributions are continuous. When the signal space is finite, trade can only occur
when the seller receives her lowest possible signal and the buyer gets her highest
signal.

This result does not extend to the multilateral case with more than two traders,
as long as at least two of them receive private information. I provide a counterexam-
ple with two buyers and one seller in which trade happens with probability one. The
key feature of multilateral mechanisms eliciting trade that is absent in any bilateral
environment is the possibility to condition the transfer between a buyer and a seller
on the signals received by other agents. That is, even in the extreme case in which
there are no gains from trade, adverse selection can be mitigated by using private
information of agents not directly involved in a given transaction.2

An important restriction on multilateral mechanisms eliciting trade is that buy-
ers’ payments and expected values (conditional on the vector of traders’ signals)
cannot be equal almost everywhere.3 This means that no multilateral bargaining
mechanism is ex post incentive compatible, i.e. in some transactions one party will
regret trading.4 In addition, it implies that, when we do observe trade, there is a
strong violation of the information aggregation properties of prices. Consequently,
the efficient markets hypothesis (Fama (1970)) for risk neutral traders, which states
that prices equal expected asset values conditional on all the available information,

1No trade results also apply to the case of heterogenous priors as long as players have concordant
beliefs in the sense of Milgrom and Stokey (1982) and the initial allocation is Pareto optimal. By
restricting attention to the common prior case, I look at a class of trade environments in which all
the initial allocations are optimal.

2I thank Joel Sobel for pointing out this fact by suggesting the use of a third party’s signals to
induce trade between a buyer and a seller.

3An exception to this rule exists when trade only takes place among lowest signal sellers and
highest signal buyers.

4For instance, in the example provided, when all traders receive the highest possible signal,
buyers pay the seller more than the conditional expected value of the object.
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either violates incentive compatibility or requires zero trade volume.

2 A Pure Common Value Environment with Pri-

vate Information

There are n risk neutral sellers, each of them owning one unit of an indivisible
object, and m risk neutral buyers, who can buy at most one unit. The unknown
value of the object is given by V , with probability distribution G. The support of
G is denoted by V. Each individual i receives a private signal stochastically related
to V , Si ∼ Fi(.|v).5 Let Si be the support of Fi(.|v).

I make the following assumptions.

Assumption 1 V ⊂ R+ is compact and has at least two elements. Si are compact
for i = 1, ..., n+m, and there exists at least an agent j for whom Sj has more than
one element.

Compactness is not essential, while the minimum number of elements in the
signal supports is necessary for the existence of at least two agents with distinct
posterior probabilities about V . Notice that I allow for asymmetries in the quality
of information by letting the signal distributions to differ across agents.

Assumption 2 G and Fi are common knowledge, i = 1, ..., n+m.

Assumption 3 G has full support. In addition, for any v ∈ V, the conditional
distribution of S = (S1, S2, ..., Sn+m), denoted F (.|v), has full support.

This implies that the conditional distribution of Si with respect to any vector
of the other traders’ signals s-i ∈ S-i also has full support. The next assumption
establishes the stochastic relationship between values and signals. It roughly states
that higher signals are more likely when the value is high and viceversa.

Assumption 4 (MLRP) For all i, Fi(.|v) satisfies the strict monotone likelihood

ratio property: fi(si|v)
fi(s′i|v)

> fi(si|v′)
fi(s′i|v′)

for all si, s
′
i ∈ Si such that si > s′i and all v, v′ ∈ V

such that v > v′.

Overall, the above assumptions lead to the strict monotonicity of the expected
value of the object conditional on agents’ signals:

E(v|s) > E(v|s′), (1)

for all s, s′ ∈ S =
∏

i Si such that s > s′.

Assumption 5 (Common values) Signals are payoff irrelevant, i.e. agents’ util-
ity is only a function of V.

5In what follows, I use uppercase letters to denote random variables (V , Si) or cumulative
distribution functions(G, F ) and lowercase to denote realizations of random variables (v, si) or
probabilities and densities (g, f).
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3 Trade Mechanisms

Direct bargaining mechanisms specify, for every signal profile s ∈ S reported (truth-
fully) by the agents, both a payment vector and a vector of probabilities of trading
the object.6 The sum of payments is zero (balanced budget) and the sum of sell-
ers’ probabilities is equal to the sum of buyers’ probabilities. I denote the payment
function x : S → Rn+m, with

∑
i xi(s) = 0 for all s ∈ S, and the vector of trade

probabilities q : S → [0, 1]n+m, which satisfies
∑n

i=1 qi(s) =
∑n+m

i=n+1 qi(s) ≤ n for all
s ∈ S. Abusing notation, I use v(s) to refer to E(V |s). Given the above assump-
tions, the expected (interim) payoffs in mechanism (q, x) for sellers and buyers are,
respectively,7

πi(si) := Es-i(−xi(si, S-i)− qi(si, S-i)v(si, S-i)|si)

=

∫
s-i∈S-i

{
−xi(si, s-i)− qi(si, s-i)v(si, s-i)

}
dF-i(s-i|si) (2)

and

πj(sj) := Es-j(qj(sj, S-j)v(sj, S-j)− xj(sj, S-j)|sj)

=

∫
s-j∈S-j

{
qj(sj, s-j)v(sj, s-j)− xj(sj, s-j)

}
dF-j(s-j|sj). (3)

The mechanism (q, x) is individually rational (IR) if πsi (si) ≥ 0 for all si ∈ Si,
i = 1, ..., n and πbj(sj) ≥ 0 for all sj ∈ Sj, j = n+ 1, ..., n+m, i.e.

− Es-i(xi(si, S-i)|si) ≥ Es-i(qi(si, S-i)v(si, S-i)|si), (4)

and
Es-j(xj(sj, S-j)|sj) ≤ Es-j(qj(sj, S-j)v(sj, S-j)|sj). (5)

In addition, (q, x) is incentive compatible (IC) if telling the truth is a Bayesian
Nash equilibrium:

Es-i(xi(s
′
i, S-i) + qi(s

′
i, S-i)v(s

′
i, S-i)|s′i) ≤

Es-i(xi(si, S-i) + qi(si, S-i)v(s
′
i, S-i)|s′i) (6)

for all si, s
′
i ∈ Si, i = 1, ..., n and

Es-j(xj(s
′
j, S-j)− qj(s

′
j, S-j)v(s

′
j, S-j)|s′j) ≤

Es-j(xj(sj, S-j)− qj(sj, S-j)v(s
′
j, S-j)|s′j) (7)

for all sj, s
′
j ∈ Sj, j = n+ 1, ..., n+m.

6Myerson and Satterthwaite (1983) analyze bilateral bargaining mechanisms in the context of
trade with pure private values.

7I abuse notation again by denoting F-i(.|si) the distribution of all agents’ signals except agent
i’s (S-i) conditional on agent i’s signal, i = 1, ..., n + m.
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4 Bilateral Case: A No-Trade Theorem

I analyze the possibility of trade with one buyer and one seller under two different
scenarios: the continuous case (F-i(.|si) is absolutely continuous, i = 1, 2) and the
finite case. I show that in the former there is no mechanism (q, x) involving positive
probability of trade that is individually rational and incentive compatible. If there
is no such mechanism, using the revelation principle we can assert that there is
no equilibrium with positive probability in any trade environment (with voluntary
participation) satisfying Assumptions 1-5 and the absolute continuity condition.

However, when the signal space is finite, equilibria with trade exist, although
trade is restricted to take place only when both the seller receives her lowest possible
signal (s1) and the buyer gets her highest signal (s2).

I simplify notation by denoting x(s1, s2) the buyer’s payment to the seller,
x(s1, s2) := −x1(s1, s2) = x2(s1, s2), and q(s1, s2) the buyer’s probability of get-
ting the object, q(s1, s2) := q1(s1, s2) = q2(s1, s2). The proof is in the Appendix.

Theorem 1 (a) (Continuous Case) If F1(.|s2) and F2(.|s1) are absolutely con-
tinuous with densities f-i(s-i|si) > η > 0 (i = 1, 2) for all s ∈ S, there is no IR and
IC bargaining mechanism involving positive probability of trade in any bilateral trade
environment satisfying Assumptions 1-5.

(b) (Finite Case) Assume S = S1×S2 is finite. The only IR and IC bargaining
mechanisms satisfying Assumptions 1-5 that exist involve no trade for all s ∈ S\
{(s1, s2)}.

The proof of Theorem 1 consists of two parts. First, I show that the zero
sum game nature of the trading environment implies that IR constraints hold with
equality almost surely. Given this, if there is trade with positive probability for
some seller’s signal s1 > s1 and for some buyer’s signal s2 < s2, in order to satisfy
seller’s IC constraints we need to violate buyer’s IC constraints. This result is driven
by the strict monotonicity of v(s1, s2). To see how, assume that the seller gets s1

and that IR holds with equality for s1. For the seller’s IC constraint under s1 to
be satisfied, the expected payment under s1 > s1 has to be strictly lower than the
expected net value of the object (q(s1, s2)v(s1, s2)), when expectations (taken over
buyer’s signals) are conditional on s1. Otherwise, by strict monotonicity, it will be
profitable for the seller to lie and report s1 > s1.

8 This implies that q and x, on
average, favor the buyer when low signals are more likely. But given this, a buyer
with a very high signal has an incentive to report a low signal, provided that, by
strict monotonicity, the object is more valuable to him than to a buyer receiving the

8Strict monotonicity implies that Es2(q(s1, s2)v(s1, s2)|s1) < Es2(q(s1, s2)v(s1, s2)|s1). Hence,
if the last term is not strictly bigger than Es2(x(s1, s2)|s1), a seller receiving s1 will get a strictly
positive payoff from reporting s1.
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lower (reported) signal. Hence, the scenario in which positive probability of trading
does not violate IR and IC constraints involves q(s) > 0 only for s = (s1, s2), which
is a non-null event in the finite case by the full support assumption.

In sum, the strict monotonicity of v(s1, s2), coupled with IR constraints holding
with equality, forces net values to be bigger than payments for low signal profiles
in order to satisfy low-signal seller’s IC constraints, but this provides incentives for
high-signal buyers to lie. Thus, the only way all constraints are satisfied is when net
values and payments are zero (except maybe for (s1, s2)).

5 The Multilateral Case

A no-trade result like Theorem 1 does not exist for the case with three or more
traders, except when only one trader receives more than one signal.9 In fact, there
are mechanisms (q, x) leading to trade with probability one. However, except in
boundary cases, to elicit trade the probability that payments equal values needs to
be strictly less than one (Theorem 2). As an example, consider the following trade
environment.

Example 1 There are three traders, one seller (n = 1) and two buyers (m = 2).
Each of the traders receives a private signal si ∈ {0, 1}, with P(si = 0) = P(si =
1) = 1

2
. The conditional distribution of s−i given si is given by

P(s−i|si) =



1
2

if s−i = (0, 0), si = 0
1
8

if s−i = (0, 0), si = 1
3
16

if s−i ∈ {(0, 1), (1, 0)}
1
8

if s−i = (1, 1), si = 0
1
2

if s−i = (1, 1), si = 1,

(8)

and the expected value of the asset conditional on the vector of signals is

v(s) =


0 if s = (0, 0, 0)
1
4

if
∑
si = 1

3
4

if
∑
si = 2

1 if s = (1, 1, 1)

(9)

In this setting, it is possible to find a direct bargaining mechanism (x, q) such
that the object is traded for all s. In particular, we can find a payment function

9In such a case, it is easy to show that in the finite case trade can only happen when the trader
with a signal space that is not a singleton either receives the lowest possible signal (seller) or the
highest possible one (buyer).
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x(s) such that the probability of trade for buyer i is

qi(s) =


0 if si < sj
1
2

if si = sj

1 if si > sj,

(10)

where j denotes the other buyer. The above probabilities mean that the buyer with
the highest signal receives the object for sure except when both buyers have the same
signal, in which case each buyer receives the object with probability one half.10

The IR constraints (4)-(5) in this zero-sum environment hold with equality.11

Thus, the IR constraints for buyer i ∈ {2, 3} given (8)-(10) are, respectively,12

1

2
xi(0, (0, 0)) +

3

16
[xi(0, (1, 0)) + xi(0, (0, 1))] +

1

8
xi(0, (1, 1)) =

3

128

and

1

8
xi(1, (0, 0)) +

3

16
[xi(1, (1, 0)) + xi(1, (0, 1))] +

1

2
xi(1, (1, 1)) =

63

128
.

Let Σxi(si, s−i) = x2(s2, (s1, s3)) + x3(s3, (s1, s2)). The IR constraints for the
seller are given by

1

2
Σxi(0, (0, 0)) +

3

16
[Σxi(1, (0, 0)) + Σxi(0, (0, 1))] +

1

8
Σxi(1, (0, 1)) =

3

16

and

1

8
Σxi(0, (1, 0)) +

3

16
[Σxi(1, (1, 0)) + Σxi(0, (1, 1))] +

1

2
Σxi(1, (1, 1)) =

13

16
.

Given that the IR constraints hold with equality, the IC constraints (6) for buyer
i reduce to the following inequalities:

1

2
xi(1, (0, 0)) +

3

16
[xi(1, (1, 0)) + xi(1, (0, 1))] +

1

8
xi(1, (1, 1)) ≥ 15

128

and

1

8
xi(0, (0, 0)) +

3

16
[xi(0, (1, 0)) + xi(0, (0, 1))] +

1

2
xi(0, (1, 1)) ≥ 11

128
.

10These trade probabilities are similar to what happens in symmetric equilibria of common value
auctions.

11This is shown in the proof of Theorem 2.
12Recall that the notation followed is xi(si, s−i). For instance, xi(0, (1, 0)) denotes the payment

from buyer i to the seller when the signals received are zero for both buyers one for the seller.
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Similarly, the IC constraints for the seller are

1

2
Σxi(0, (1, 0)) +

3

16
[Σxi(1, (1, 0)) + Σxi(0, (1, 1))] +

1

8
Σxi(1, (1, 1)) ≤ 3

16

and

1

8
Σxi(0, (0, 0)) +

3

16
[Σxi(1, (0, 0)) + Σxi(0, (0, 1))] +

1

2
Σxi(1, (0, 1)) ≤ 13

16
.

If we further require that a buyer does not pay when he does not receive the
object with positive probability (xi(0, (., 1)) = 0 for i = 2, 3),13 then

(i) the payments when the object is (in expectation) least valuable are strictly
less than the value: xi(0, (0, 0)) < v(0, 0, 0) = 0 for i = 2, 3,14

(ii) for some buyer i, the payment when the object is most valuable is larger than
the value: xi(1, (1, 1)) > v(1, 1, 1) = 1,15 and

(iii) for some buyer i, xi(1, (1, 0)) < v(0, 0, 0).

An example of such a mechanism (x, q) is given by (10) and the following sym-
metric payment function:

xi(si, s−i) =



− 3
16

if si = 0, s−i = (0, 0)
5
8

if si = 0, s−i = (1, 0)

0 if si = 0, s−i = (s1, 1)
3
4

if si = 1, s−i = (0, 0)

−5
2

if si = 1, s−i = (1, 0)
3
8

if si = 1, s−i = (0, 1)
51
32

if si = 1, s−i = (1, 1).

(11)

As illustrated by this example, incentive compatibility prevents payments to be
equal to values almost everywhere, except if buyers (sellers) only trade when they
receive their highest (lowest) signal. This is formally stated in the following theorem.
Let qi(si) =

∫
s-i∈S-i

qi(si, s-i)dF-i(s-i|si).

Theorem 2 If (x, q) satisfies Assumptions 1-5, then P(−xi(si, S−i) = v(si, S−i)|qi(si) >
0, si > si) < 1 for all i ∈ {1, ..., n} and P(xj(sj, S−j) = v(xj(sj, S−j)|qj(sj) > 0, sj <
sj) < 1 for all j ∈ {n+ 1, ..., n+m}.

13This is a common feature in many trade environments, such as double auctions.
14This is easy to check by subtracting the buyers’ first IR constraint from the second IC constraint

and setting xi(0, (1, 1)) = 0.
15This is due to the restrictions that (i) and the seller’s second IR constraint and first IC

constraint impose on Σxi(1, (1, 1)).
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Proof. First, it is straightforward to show that IR constraints hold with equality
almost surely (henceforth a.s.). Notice that pure common values plus the require-
ment that

∑
i xi(s) = 0 and

∑n
i=1 qi(s) =

∑n+m
i=n+1 qi(s) for all s ∈ S imply that

E

(
−

n+m∑
i=1

xi(S)− v(S)

[
n∑
i=1

qi(S)−
n+m∑
i=n+1

qi(S)

])
=

n+m∑
i=1

E(πi(S)) = 0.

By Assumption 3 (full support) this is only true if πi(si) = 0 a.s., i = 1, ..., n+m,
provided that πi(si) is nonnegative by IR.

Now assume that P(−xi(si, S−i) = v(S)|qi(si) > 0) = 1 for some seller i and sig-
nal si > si. By strict monotonicity v(s′i, s−i) < v(si, s−i) for all s′i < si and all s−i.
But then, if qi(si) > 0 she can earn a strictly positive payoff by reporting si when
her true signal is s′i, thus violating incentive compatibility. A symmetric argument
holds for buyers. �

Appendix

Proof of Theorem 1. Denote A1 ⊆ S1 and A2 ⊆ S2 the sets for which (4) and
(5) hold with equality, respectively. Accordingly, IC constraints simplify to

Es2(x(s1, S2)|s′1) ≤ Es2(q(s1, S2)v(s
′
1, S2)|s′1) (12)

for all s′1 ∈ A1 and all s1 ∈ S1, and

Es1(x(S1, s2)|s′2) ≥ Es1(q(S1, s2)v(S1, s
′
2)|s′2) (13)

for all s′2 ∈ A2 and all s2 ∈ S2.

PART (a): the continuous case

Assume trade occurs with positive probability, i.e. the sets
S∗
i = {si ∈ Si: Es-i(q(si, S-i)|si) > 0} are non-null, i = 1, 2. By (12) and the

strict monotonicity of v( . , .) we have that, for all s1 > s′1 with s1 ∈ S∗
1 and s′1 ∈ A1,

Es2(x(s1, S2)|s′1) ≤ Es2(q(s1, S2)v(s
′
1, S2)|s′1)

< Es2(q(s1, S2)v(s1, S2)|s′1). (14)

These inequalities lead to the following result, whose validity we assume for the
moment.
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Claim 1 If trade occurs with positive probability there exists a small enough signal
s′1 ∈ A1 such that, for all s′2 ∈ A2,

Es1 [Es2(x(S1, S2)|s′1)|s′2] < Es1 [Es2(q(S1, S2)v(S1, S2)|s′1)|s′2]. (15)

Note that F1(.|s′2)×F2(.|s′1) induces a well defined product measure on σ(S1×S2),
the σ-field generated by S1 × S2. In addition, it is easy to check that both x(S1, S2)
and q(S1, S2)v(S1, S2) are integrable with respect to this product measure.16 There-
fore, we can apply Fubini’s theorem and switch the order of integration on both
sides of (15):

Es2 [Es1(x(S1, S2)|s′2)|s′1] < Es2 [Es1(q(S1, S2)v(S1, S2)|s′2)|s′1] (16)

Given that {s2 ∈ A2} is a probability one event and that S∗
2 is non-null, this strict

inequality implies that there exist s2 ∈ S∗
2 and a high enough signal s′2 ∈ A2 satisfying

s2 < s′2 such that

Es1(x(S1, s2)|s′2) < Es1(q(S1, s2)v(S1, s2)|s′2) ≤ Es1(q(S1, s2)v(S1, s
′
2)|s′2)

where the last inequality is due to the strict monotonicity of v( . , .).
But since (13) holds for all s′2 ∈ A2, the buyer’s IC constraint for s′2 is violated.

Hence, the only mechanism that satisfies IR and IC constraints involves q(s1, s2)
equal to zero a.s.

PART (b): the finite case
By Assumption 3 and the finiteness of S, all s ∈ S occur with positive probability.

Hence, IR constraints hold with equality and (12) -(13) are satisfied for all seller and
buyer’s signals.

First, I show that q(s1, s2) can not be greater than zero for more than one s ∈ S.
Assume that there exist two seller’s signals with positive probability of trade. In
this case, (15) is satisfied for s′1 = s1. Applying Fubini’s theorem for s′2 = s2 we
have that

Es2 [Es1(x(S1, S2)|s̄2)|s1] < Es2 [Es1(q(S1, S2)v(S1, S2)|s̄2)|s1]

Note that for this inequality to hold, there needs to exist a signal s2 ∈ S2 such that

Es1(x(S1, s2)|s̄2) < Es1(q(S1, s2)v(S1, s2)|s̄2) ≤ Es1(q(S1, s2)v(S1, s̄2)|s̄2).

If this inequality holds for s2 6= s̄2 the buyer has an incentive to report untruth-
fully whenever he receives s̄2, thus violating (13). On the other hand, if the only

16The latter is integrable since both q(., .) and v( . , .) are bounded. Given this and that
Es2(x(s1, S2)|s1) ≤ Es2(q(s1, S2)v(s1, S2)|s1) holds for all s1 ∈ S1 the former is also integrable.
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signal for which it holds is s̄2, then it would imply a violation of the IR constraint,
since this constraint holds with equality. A similar argument applies when there
exist two buyer’s signals with positive probability of trade.

Second, I show that when the only s ∈ S for which q(s1, s2) can be greater than
zero is (s1, s2). Assume there exists s1 > s1 with q(s1, s2) > 0 for some s2 ∈ S2.
Then,

x(s1, s2) = q(s1, s2)v(s1, s2) > q(s1, s2)v(s1, s2),

which violates seller’s IC constraint for s1. A similar argument applies to any s2 < s1

with q(s1, s2) > 0 for some s1 ∈ S1.
Finally, it is straightforward to see that any mechanism such that q(s) = a1{s=(s1,s2)}

and x(s) = q(s)v(s), with a ∈ (0, 1] satisfies IR constraints and (12) -(13).
Proof of Claim 1. First, note that q(s1, s2) = 0 a.s. for any s1 ∈ S1\S∗

1,
provided Es2(q(s1, S2)|s1) = 0 and q(s1, s2) ≥ 0. This, in conjunction with (12) and
the absolute continuity of F2(.|s′1), implies that

Es2(x(s1, S2)|s′1) ≤ Es2(q(s1, S2)v(s
′
1, S2)|s′1) = 0

a.s. for all s1 ∈ S1\S∗
1. Hence, we have that the left hand side of (15) satisfies

Es1 [Es2(x(S1, S2)|s′1)|s′2] ≤

Es1 [Es2(x(S1, S2)|s′1)[1{{S1<s′1}
⋂

S∗
1} + 1{{S1>s′1}

⋂
S∗
1}]|s

′
2]. (17)

Likewise,

Es1 [Es2(q(S1, S2)v(S1, S2)|s′1)|s′2] =

Es1 [Es2(q(S1, S2)v(S1, S2)|s′1)[1{{S1<s′1}
⋂

S∗
1} + 1{{S1>s′1}

⋂
S∗
1}]|s

′
2]. (18)

We have to show that there exists a small enough s′1 ∈ A1 for which the right
hand side of (17) is strictly smaller than the right hand side of (18) or, alternatively,
that

ϕ(s′1,s
′
2)︷ ︸︸ ︷

Es1 [Es2([x(S1, S2)− q(S1, S2)v(S1, S2)]|s′1)1{{S1<s′1}
⋂

S∗
1}|s

′
2] <

Es1 [Es2([q(S1, S2)v(S1, S2)− x(S1, S2)]|s′1)1{{S1>s′1}
⋂

S∗
1}|s

′
2]︸ ︷︷ ︸

ψ(s′1,s
′
2)

. (19)

First, notice that by (12),

ϕ(s′1, s
′
2) ≤ Es1 [Es2(q(S1, S2)[v(s

′
1, S2)− v(S1, S2)]|s′1)1{{S1<s′1}

⋂
S∗
1}|s

′
2]

≤ (v − v)P({S1 < s′1} ∩ S∗
1|s′2) =: ϕ(s′1, s

′
2), (20)
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where v and v denote the maximum and minimum values in V, respectively.
By Assumption 1 (v − v) is bounded. In addition, the absolute continuity of

F1(.|s′2) implies that P(S∗
1 ∩ (S1\A1)|s′2) = 0. Hence, by arguing again the absolute

continuity of F1(.|s′2), given any ε > 0 we can find a small enough s′1 ∈ A1 such that
P({S1 < s′1} ∩ S∗

1|s′2) < ε. On the other hand, we have that

ψ(s′1, s
′
2) ≥ Es1 [Es2(q(S1, S2)[v(S1, S2)− v(s′1, S2)]|s′1)1{{S1>s′1}

⋂
S∗
1}|s

′
2]

=

∫
s1>s′1,
s1∈S∗

1

[ ∫
s2∈S2

q(s1, s2)[v(s1, s2)− v(s′1, s2)]f2(s2|s′1)ds2

]
f1(s1|s′2)ds1

≥
∫

s1>s′1,
s1∈S∗

1

[ ∫
s2∈S2

q(s1, s2)[v(s1, s2)− v(s′1, s2)]η
2ds2

]
ds1 =: ψ(s′1, s

′
2).

The inner integral is strictly positive for any s1 ∈ S∗
1 such that s1 > s′1 by strict

monotonicity of v( . , .). In addition, since P(S∗
1 ∩ A1|s′2) = P(S∗

1|s′2) > 0, by the
absolute continuity of F1(.|s′2) there is a small enough s′1 ∈ A1 such that the set of
s1 over which we integrate ({S1 > s′1}∩S∗

1) has positive Lebesgue measure, implying
that ψ(s′1, s

′
2) > 0. Moreover, ψ(s′1, s

′
2) gets larger as s′1 gets smaller given that both

the inner integral and {S1 > s′1} ∩ S∗
1 are bigger for smaller s′1. Therefore, we can

find a small enough s′1 ∈ A1 such that
ϕ(s′1, s

′
2) ≤ ϕ(s′1, s

′
2) < ψ(s′1, s

′
2) ≤ ψ(s′1, s

′
2). �

This completes the proof of Theorem 1. �
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